基于两种梁理论对变幅锥形杆弯曲振动的特性分析及参数设计

常婷婷,沈峰,鲍四元

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 114-122.

PDF(1090 KB)
PDF(1090 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 114-122.
论文

基于两种梁理论对变幅锥形杆弯曲振动的特性分析及参数设计

  • 常婷婷,沈峰,鲍四元
作者信息 +

Characteristics analysis and parameter design of a bending vibrational conical horn based on two kinds of beam theories

  • CHANG Tingting,SHEN Feng,BAO Siyuan
Author information +
文章历史 +

摘要

为了研究圆锥形杆自由振动的特性,分别基于欧拉-贝努力梁理论和铁木辛柯梁理论,建立变截面杆自由振动的分析模型。首先采用一种含三角函数的级数形式来表示欧拉-贝努利梁理论下杆的位移函数,以满足端部位移的条件;然后利用能量泛函极小化得到系数满足的线性方程组,进而获得不同边界条件下圆锥形杆在欧拉-贝努利梁理论下的若干阶固有频率;类似地,假设位移的级数形式并利用能量函数,建立锥形杆基于铁木辛柯梁理论的求解方法,可得各阶固有频率和模态;最后给出等截面杆在两种理论下固有频率的转化公式,并推广应用到圆锥形杆的固有频率近似转化。算例分析锥形杆截面参数对结构固有频率的影响,并基于目标设计频率和若干限制条件对锥形杆的尺寸进行设计。数值结果表明,在应用欧拉-贝努利梁理论和铁木辛柯梁理论时,所提方法都能够稳定收敛且计算效率高,具有较高的精确度。本文的研究工作为超声工程中变幅杆的动力学特性提供了计算依据。

Abstract

To investigate the free vibration characteristics of conical rod, analysis models are established based on Euler-Bernoulli beam theory and Timoshenko beam theory respectively. First, in the presented models,series forms including trigonometric basis functions are adopted to express the the displacement function, which can satisfy the boundary condition of the rod. Then the linear equation set about the unknown coefficients is obtained based on the the minimum principle of the energy functional, and several natural frequencies and modes can be worked out by the eigenvalue problems. Similarly, suppose the series forms of the displacement and use the energy function, the solution method is established for conical rod’s vibration problem based on Timoshenko beam theory, and natural frequencies and modes can be obtained. Finally, a transformation formula is presented to transform the natural frequency under the Euler-Bernoulli beam theory and Timoshenko beam theory. The transformation formula is extended to the case of conical rod. The numerical examples analyze the sectional parameters’ influence on the natural frequency of conical rod, and some length parameters of the conical rod are designed based on value of target natural frequency and some restricted conditions. The numerical results show that under the two classical beam theories the presented method is stably converged with high efficiency and good accuracy. The research can provide computational basis for the dynamic characteristics of horn in ultrasonic engineering.

关键词

铁木辛柯梁理论 / 变幅杆 / 新型改进傅里叶级数 / 自由振动 / 固有频率

Key words

Timoshenko beam theory / horn / a new type of improved Fourier series / free vibration / natural frequency

引用本文

导出引用
常婷婷,沈峰,鲍四元. 基于两种梁理论对变幅锥形杆弯曲振动的特性分析及参数设计[J]. 振动与冲击, 2024, 43(2): 114-122
CHANG Tingting,SHEN Feng,BAO Siyuan. Characteristics analysis and parameter design of a bending vibrational conical horn based on two kinds of beam theories[J]. Journal of Vibration and Shock, 2024, 43(2): 114-122

参考文献

[1]张然,贺西平,王照伟.具有大振幅放大系数的倒锥形变幅杆[J].振动与冲击,2020,39(24):143-149. ZHANG Ran,HE Xiping,WANG Zhaowei. An inverted cone horn with large amplitude amplification factor. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(24): 143-149(in Chinese). [2]张雄,焦锋. 超声加工技术的应用及其发展趋势[J]. 工具技术,2012,01:3-8. Zhang Xiong, Jiao Feng. Applications and Development Trends of Ultrasonic Machining Technology[J]. Tool Technology,2012,01:3-8(in Chinese). [3] 万志坚,梅红.一种面内弯纵复合模态的直线超声电动机研究[J].微特电机,2021,49(04):17-21,29. Wan Zhi-jian, Mei Hong. Research on a linear Ultrasonic Motor using bending-in-plane and longitudinal modes. Small & Special Electrical Machines, 2021,49(04),17-21,29(in Chinese). [4] 刘向尧,聂宏,魏小辉.多跨的三种梁的横向自由振动模型[J].振动与冲击,2016,35(08):21-26. LIU Xiang-yao NIE Hong WEI Xiao-hui . The transverse free vibration model of three multi-span beams. Journal of vibration and shock, 2016, 35(8): 21-26(in Chinese). [5] 牛国华,王刚锋,王剑.组合L型变截面梁的自由振动特性分析[J].振动与冲击,2022,41(05):228-234. Niu Guo-hua, Wang Gangfeng, WANG Jian. Analysis of free vibration characteristics of composite L-shaped variable cross-section beam. Journal of vibration and shock, 2022, 41(5): 228-234(in Chinese). [6] Ma H. Exact solution of vibration problems of frame structures[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(5):587-596. [7] Wang Xinwei, Yongliang Wang,Yong Zhou. Application of a new differential quadrature element method to free vibrational analysis of beams and frame structures[J]. Journal of Sound and Vibration, 2004, 269(3-5):1133-1141. [8] 吴林潮,吴志渊,张文明.基于近场动力学的梁结构振动特性分析方法研究[J].固体力学学报,2021,42(04):467 -475. Linchao Wu, Zhiyuan Wu, Wenming Zhang. Vibration analysis method of beam structure in Peridynamics[J]. Chinese Journal of Solid Mechanics, 2021, 42(4): 467-475(in Chinese). [9]HAN R P S, ZU J W. Analytical dynamics of a spinning Timoshenko beam subjected to a moving load[J].Journal of the Franklin Institute, 1993, 330(1):113-129. [10] Hamioud Saida, Khalfallah Salah. Spectral element analysis of free - vibration of Timoshenko beam[J]. International Journal for Engineering Modelling, 2018, 31(1/2):61-76. [11] 李晓姣. 梁力学问题的辛本征值分析方法[D].大连理工大学,2018. (Li Xiaojiao.Symplectic eigenvalue direction method for beam mechanics problems[D]. Dalin University of Technology, 2018 (in Chinese)). [12] Mohammad Karkon. An efficient finite element formulation for bending, free vibration and stability analysis of Timoshenko beams[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(10)):1-16. [13]严日明,刘德福,陈涛,等. 一种圆锥形变幅杆弯曲振动固有频率的计算方法[J]. 振动与冲击, 2016, 35(7): 198-204. YAN Ri-ming, LIU De-fu, CHEN Tao, etc. A calculation method of flexural vibration frequency for conical horn. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(7): 198-204(in Chinese). [14] 葛仁余,张金轮,韩有民,等.功能梯度变截面梁自由振动和稳定性研究[J].应用力学学报, 2017,34(05):875-880, 1012. Ge Renyu, Zhang Jinlun, Han Youmin , etc. Free vibration and stability of axially functionally graded beams with variable cross-section. CHINESE JOURNAL OF APPLIED MECHANICS, 2017,34(05):875-880, 1012(in Chinese). [15] Auciello N M . Free vibration of a restrained shear-deformable tapered beam with a tip mass at its free end[ J]. Journal of Sound and Vibration, 2000, 237: 542-549. [16] Auciello N M, Ercolano A.A general solution for dynamic response of axially loaded non-uniform Timoshenko beams[ J] .International Journal of Solids and Structures, 2004, 41:4861-4874. [17] Li W L. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and Vibration. 2000,237(4):709-725. [18] LI W L, ZHANG X, DU J, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2009, 321(1-2): 254-269. [19]吴子奇,王治,史冬岩,等. 任意边界条件下变厚度中厚矩形板的静动态特性分析[J]. 船舶力学,2018,22(11):1407-1420. WU Zi-qi;WANG Zhi;SHI Dong-yan, etc. Static and dynamic characteristics analysis of moderately thick rectangular plates with arbitrary boundary supports.Journal of Ship Mechanics. 2018,11(22): 1407-1420(in Chinese). [20] Bao S, Wang S, Wang B. An improved Fourier–Ritz method for analyzing in-plane free vibration of sectorial plates[J]. Journal of Applied Mechanics, 2017, 84(9): 091001. [21] 蒋济同,王熙堃. 一种推导Timoshenko 梁频率方程的新方法[J]. 中国海洋大学学报(自然科学版),2008(06): 1035-1039. Jiang Ji-tong, Wang Xi-kun. A new method for deriving frequency equations of Timoshenko beam[J], Periodical of Ocean University of China(Natural sciences),2008(06): 1035-1039(in Chinese). [22] 胡海岩.梁在固有振动中的对偶关系[J].力学学报,2020,52(01):139-149. Hu Haiyan. Duality relations of beams in natural vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 139-149(in Chinese).

PDF(1090 KB)

Accesses

Citation

Detail

段落导航
相关文章

/