针对两种常见的飞机滑跑状态,即减摆状态和操纵状态,建立多自由度起落架摆振动力学模型,研究间隙对两者的影响机理,得到了两种不同形式的含间隙起落架摆振动力学数学模型。通过非光滑系统光滑化处理以及多维系统数值分析求解。结果表明:减摆状态下,起落架摆振频率会略微增大,结构库伦摩擦能够减弱结构间隙引发的持续摆振影响。对于操纵状态,通快速傅里叶变换进行频域特性分析,发现支柱侧弯以及扭转之间耦合严重,两者的刚度直接决定起落架的摆振频率;存在结构间隙后,起落架整体的频率会变小,最终系统均会逐步趋于稳定的极限环震荡状态。
Abstract
Aiming at two common aircraft running states, i.e., anti-swing state and control state, a multi-degree-of-freedom vibration mechanical model of landing gear pendulum is established, and the mechanism of the influence of clearance on them is studied. Two different types of vibration mechanical mathematical models of landing gear pendulum with clearance are obtained. Through smoothing of non-smooth system and numerical analysis of multidimensional system. The results show that the shimmy frequency of landing gear will slightly increase under the shimmy reduction condition, and the structural Coulomb friction can weaken the continuous shimmy caused by structural clearance. For the control state, the frequency domain characteristics are analyzed by fast Fourier transform, and it is found that the coupling between the lateral bending and torsion of the strut is serious, and the rigidity between them directly determines the shimmy frequency of the landing gear. When there is a structural gap, the overall frequency of the landing gear will decrease, and eventually the system will gradually tend to a stable limit cycle oscillation state.
关键词
起落架摆振 /
结构间隙 /
非线性动力学 /
分岔分析 /
频域分析
{{custom_keyword}} /
Key words
Landing gear shimmy /
Structural clearance /
Nonlinear dynamics /
Bifurcation analysis /
Frequency domain analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯飞,常正,聂宏,等.飞机柔性对前起落架摆振的影响分析[J].航空学报,2011, 32(12): 2227-2235.
FEND F, CHANU Z, NIE H,et al. Analysis of influ-ence of aircraft flexibility on nose landing gear shim-my[J]. Acta Aeronautics et Astronautics Sinica, 2011, 32(12): 2227-2235.
[2] Gordon, James T. Perturbation Analysis of Nonlinear Wheel Shimmy[J]. Journal of Aircraft, 2015, 39(2):305-317.
[3] Arreaza Carlos, Behdinan Kamran and Zu Jean W. Linear Stability Analysis and Dynamic Response of Shim-my Dampers for Main Landing Gears[J]. Journal of Ap-plied Mechanics, 2016, 83(8): 081002-081012.
[4] Mohsen Rahmani and Kamran Behdinan. Structural design and optimization of a novel shimmy damper for nose landing gears[J]. Structural and Multidisciplinary Opti-mization, 2020, 62(5): 1-21.
[5] JOHN C. CLEMENTS. Real-time optimal control of air-craft turn trajectories[J]. Journal of Guidance, Control, and Dynamics, 2012, 16(2): 385-387.
[6] SATEESH B,MAITI D K. Non-linear analysis of a typi-cal nose landing gear model with torsional free play[J]. Journal of Aerospace Engineering, 2009, 223(6): 627-641.
[7] Dr. K S Ravi et al. An Investigative Review on Landing Gear of an Aircraft Structure based on Finite Element Monitoring[J]. Journal of Trend in Scientific Research and Development, 2018, 2(4): 1492-1495.
[8] Chen Xiulong and Jiang Shouyuan. Nonlinear dynamic behavior analysis of multi-linkage mechanism with mul-tiple lubrication clearances[J]. European Journal of Me-chanics B/Fluids, 2022, 91(2): 177-193.
[9] 冯飞,罗波,张策,朱红民.轮间距与双轮共转对飞机起落架摆振的影响分析[J].振动与冲击,2019,38(06):212-217.
FENG Fei,LUO Bo,ZHANG Ce, et al. Effect of wheel-distance and corotating wheels on aircraft shimmy [J]. JOURNAL OF VIBRATION AND SHOCK, 2019,38(06):212-217. (in Chinese).
[10] 顾宏斌,丁运亮,姚志,等.飞机机轮摆振的数字仿真[J].航空学报,2001, 22(4): 362-365.
GU Hongbin, DING Yunliang,YAO Zhi, et al. Simulation of air-craft wheel shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4):362-365 (in Chinese).
[11] QIN Dou , ZHAO Bin , GAO Diankui ,et al. Thermal analysis model of scroll compres-sor with clearance leakage based on multiple scale meth-od[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(5): 1-8.
[12] Lu Z, Wang Z, Zhou Y, et al. Nonlinear dissipative devices in structural vibration control: A review[J]. Journal of Sound & Vibration, 2018, 423(9):18-49.
[13] Deng, Shuning et al. Two-parameter dynamics of an au-tonomous mechanical governor system with time de-lay[J]. Nonlinear Dynamics, 2022, 107(11): 641–663.
[14]YIN Qiaozhi ,WEI Xiaohui ,NIE Hong ,et al. Parameter effects on high-speed UAV ground directional stability using bifurcation anal-ysis[J]. Chinese Journal of Aeronautics, 2021, 34(11): 1-14.
[15] 刘小川,刘冲冲,牟让科.飞机起落架系统摆振动力学研究进展[J].航空学报,2022,43(06):106-121.
LIU Xiaochuan, LIU Chongchong, MOU Rangke. Research progress on shimmy dynamics of aircraft landing gear systems[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(6): 106-121 (in Chinese).
[16] Zhuravlev V P, Klimov D M. The Causes of the Shimmy Phenomenon[J]. Doklady Physics, 2009, 54 (10):475-478.
[17] Sura N K, Suryanarayar S. Lateral response of nonlinear nose-wheel landing gear models with torsional free play[J]. Journal of Aircraft, 2007, 44(6):1991-1997.
[18] Sateesh B. Nonlinear Analysis of a Typical Nose Landing Gear Model with Torsional Free Play[C]// International Conference on Vibration Problems. 2009.
[19] YI M S , HWANG J U,BAE J S , et al. Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play[J]. Journal of The Korean Society for Aeronautical and Space Sciences, 2010, 38(10):973-978.
[20] Howcroft C, Lowenberg M, Neild S, et al. Effects of Freeplay on Dynamic Stability of an Aircraft Main Land-ing Gear[J]. Journal of Aircraft, 2013, 50(6):1908-1922.
[21] C., Howcroft, M., Lowenberg, et al. Shimmy of an air-craft main landing gear with geometric coupling and me-chanical freeplay[J]. Journal of Computational and Non-linear Dynamics, 2015, 10(5): 051011-051021
[22] Mohsen Rahmani and Kamran Behdinan. Interaction of torque link freeplay and Coulomb friction nonlinearities in nose landing gear shimmy scenarios[J]. International Journal of Non-Linear Mechanics, 2020, 119(C): 103338-103348.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}