基于遗传算法的磁流变阻尼器Bouc_Wen模型参数辨识

刘永强;杨绍普;廖英英;张耕宁

振动与冲击 ›› 2011, Vol. 30 ›› Issue (7) : 261-265.

PDF(1833 KB)
PDF(1833 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (7) : 261-265.
论文

基于遗传算法的磁流变阻尼器Bouc_Wen模型参数辨识

  • 刘永强1; 杨绍普2; 廖英英3; 张耕宁2

作者信息 +

Bouc_Wen Model Parameter Identification for a MR damper based on Genetic Algorithm

  • LIU Yong-qiang1; YANG Shao-pu2; LIAO Ying-ying3; Zhang Geng-ning2
Author information +
文章历史 +

摘要

在除试验数据外无任何先验知识的条件下如何识别Bouc_Wen模型的参数是一个亟待解决的问题。本文在对磁流变阻尼器进行力学特性试验的基础上,采用遗传算法对磁流变阻尼器Bouc_Wen模型进行参数辨识,并采用缩小参数取值范围的方法逐渐提高遗传算法的识别精度。通过分析参数值与电流间的特征曲线,采用曲线拟合的方法确定它们之间的函数关系,再利用遗传算法得到具体的函数表达式。最后用不同幅值和频率的激励试验数据对识别结果和拟合结果进行了验证。结果表明:利用缩小取值范围的方法得到的Bouc_Wen模型参数识别结果在全局最优解的附近,拟合结果和辨识出的模型均能满足要求

Abstract

How to identify parameters of Bouc_Wen model without any prior knowledge except for experimental data is a vital problem to be solved. A Bouc_Wen dynamic model of magnetorheological(MR) dampers is considered and its parameters are obtained by using genetic algorithm(GA) based on the mechanical characteristic experiment of a MR damper. Identification precision of GA is improved gradually by shrinking linear range of these parameters. Functional relationship between some parameters and applied current is determined using curve fitting through analyzing their characteristic curves. The specific function expressions are got by using GA . At last, the identification results and curve fitting results are verified with experiment data in different amplitude and frequency. The results shown that identification results of Bouc_Wen model which identification precision is improved by shrinking parameters range are close to global optimum values, and the model identified can meet need.

关键词

Bouc_Wen模型 / 遗传算法 / 磁流变阻尼器 / 参数辨识

Key words

Bouc_Wen model / genetic algorithm / magnetorheological damper / parameter identification

引用本文

导出引用
刘永强;杨绍普;廖英英;张耕宁. 基于遗传算法的磁流变阻尼器Bouc_Wen模型参数辨识[J]. 振动与冲击, 2011, 30(7): 261-265
LIU Yong-qiang; YANG Shao-pu; LIAO Ying-ying; Zhang Geng-ning. Bouc_Wen Model Parameter Identification for a MR damper based on Genetic Algorithm[J]. Journal of Vibration and Shock, 2011, 30(7): 261-265

PDF(1833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/