摘要
本文以双层隔振系统为分析对象,针对经典被动隔振技术存在局限性,在输入力的信号比较复杂的情况下,需要寻找更好的隔振方法。运用推广的变分法原理,推导出最优阻尼曲线的方程。使用变分导数求解泛函的下降方向,利用梯度下降法求解泛函的极值,从而数值求解出优化的阻尼曲线。仿真结果表明:优化阻尼隔振系统在单频正弦信号输入时,在低频段不隔振,但是接近最大被动阻尼隔振效果。在共振频率处使用最小被动阻尼控制方法会显著放大输出力振幅。当激振频率大于二阶共振峰频率时隔振效果明显,优化阻尼隔振输出力幅值远小于最优被动和最大被动隔振输出力幅值,接近最小被动阻尼隔振输出力幅值。
Abstract
Based on the analysis of vibration isolation system of double-deck, this paper aims to solve the limitation of the classic passive vibration isolation technology in the cases of relatively complex input force signal. Using the principle of generalized variation method, the equations of the optimal damping curve are deduced. The method of using variation derivative solving functional drop direction was proposed. We use the gradient descent method to solve the extremum of the functional, and use the functional numerical method to obtain the optimal damping curve. Results show that the optimization damping vibration isolation in single-rate sine signal input does not influence the vibration isolation at low frequencies. By using the method of minimum passive damping control, vibration isolation system significantly enlarges output force amplitude at the resonant frequency. When the shock excitation frequency is higher than the second-order resonant frequency, the vibration isolation has the obvious effect. The output force amplitude of the optimizing damping vibration isolation is far less than that of the optimal passive and largest passive vibration isolation, and is close to that of the minimum passive damping vibration isolation.
关键词
阻尼 /
隔振 /
半主动控制
{{custom_keyword}} /
Key words
damping /
vibration isolation /
semi-active control
{{custom_keyword}} /
高新科;邵鹄 .
智能阻尼双层隔振系统的半主动最优控制[J]. 振动与冲击, 2012, 31(19): 128-133
GAO Xin-ke; SHAO Hu .
Semi-active optimal control of intelligent damping double-deck vibration isolation system[J]. Journal of Vibration and Shock, 2012, 31(19): 128-133
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}