基于高斯混合模型的非高斯随机振动幅值概率密度函数

程红伟;;陶俊勇;蒋瑜;陈循;

振动与冲击 ›› 2014, Vol. 33 ›› Issue (5) : 115-119.

PDF(1193 KB)
PDF(1193 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (5) : 115-119.
论文

基于高斯混合模型的非高斯随机振动幅值概率密度函数

  • 程红伟1,2,,陶俊勇1,2,蒋瑜1,2,陈循1,2
作者信息 +

Amplitude Probability Density Functions for Non-Gaussian Random Vibrations Based on Gaussian-Mixture Model

  • Cheng Hongwei1,2, Tao Junyong1,2, Jiang Yu1,2, Chen Xun1,2
Author information +
文章历史 +

摘要

针对非高斯振动信号的幅值概率密度函数难以用数学模型表述的问题,提出了基于高斯混合模型的非高斯概率密度函数表示方法。首先,基于时域样本信号得到非高斯振动信号的高阶矩估计值。其次,基于高斯随机过程偶次高阶矩之间的定量关系,结合二阶高斯混合模型建立方程组,求解得到混合模型中每个高斯分量的方差和权值。然后,将各高斯分量的权值和方差代入高斯混合模型,得到适用于对称非高斯振动信号的幅值概率密度函数。最后,通过仿真信号和实测振动信号,验证了该方法的有效性和适用性。

Abstract

Aiming at the mathematical expressions of amplitude probability density functions of non-Gaussian vibrations, a Gaussian mixture model based probability density function (PDF) is proposed that is available for non-Gaussian vibra-tion signals. Firstly, the estimators of the higher-order moments of the non-Gaussian vibration process is obtained from the sample time history. Secondly, based on the quantitative relations of the even order moments of a given Gaussian process, along with the Gaussian mixture model, an equations set for evaluating the parameters in Gaussian mixture model is obtained. Lastly, based on the evaluated weighting factors and variances of the Gaussian elements, the mathe-matical model of non-Gaussian probability density function is obtained. Finally, the examples of simulated signals and measured signals have verified the validity of the presented method.


关键词

非高斯随机振动 / 高斯混合模型 / 概率密度函数(PDF) / 高阶矩

Key words

non-Gaussian random vibration / Gaussian mixture model / probability density function / higher-order moment

引用本文

导出引用
程红伟;;陶俊勇;蒋瑜;陈循;. 基于高斯混合模型的非高斯随机振动幅值概率密度函数[J]. 振动与冲击, 2014, 33(5): 115-119
Cheng Hongwei;Tao Junyong;Jiang Yu;Chen Xun;. Amplitude Probability Density Functions for Non-Gaussian Random Vibrations Based on Gaussian-Mixture Model[J]. Journal of Vibration and Shock, 2014, 33(5): 115-119

PDF(1193 KB)

Accesses

Citation

Detail

段落导航
相关文章

/