稳态热传导结构非概率可靠性拓扑优化设计

尤芳;陈建军;曹鸿钧;谢永强

振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 118-122.

PDF(962 KB)
PDF(962 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 118-122.
论文

稳态热传导结构非概率可靠性拓扑优化设计

  • 尤芳1,2,陈建军1,曹鸿钧1,谢永强1

作者信息 +

TOPOLOGY OPTIMIZATION DESIGN OF STEADY-STATE HEAT CONDUCTION STRUCTURES CONSIDERING NON-PROBABILISTIC RELIABILITY

  • You Fang1,2,Chen Jian-jun1,Cao Hong-jun1,Xie Yong-qiang1

Author information +
文章历史 +

摘要

研究具有区间参数的稳态热传导结构在散热弱度非概率可靠性约束下的拓扑优化设计问题。建立了以单元相对导热系数为设计变量,导热材料体积极小化为目标函数,满足散热弱度非概率可靠性为约束条件的稳态热传导结构的拓扑优化设计数学模型。基于区间因子法,推导出散热弱度的均值及离差的计算表达式。采用渐进结构优化法的求解策略与方法,并利用过滤技术消除优化过程中的数值不稳定性现象。通过算例验证文中模型及求解策略、方法的合理性和有效性。

Abstract

Topology optimization design of steady-state heat conduction structure with interval parameters under dissipation of heat transport potential capacity constraint is discussed. The topology optimization model of heat conduction structure with interval parameter is constructed, which is based on non-probabilistic reliability with dissipation of heat transport potential capacity constraint. The total volume of heat conductive material is to be minimized and the relative thermal conductivity of elements is regarded as the design variables here. The computational expressions of numerical characteristics of dissipation of heat transport potential capacity based on interval factor method are presented. Evolutionary structural optimization method is used in the optimization. A filtering technique is employed to eliminate numerical instabilities in process of topology optimization. The numerical examples are presented to demonstrate the feasibility and effectiveness of the optimal model and solving approach.

关键词

热传导 / 区间参数 / 非概率可靠性 / 区间因子法 / 拓扑优化

Key words

heat conduction / interval parameters / non-probabilistic reliability / interval factor method / topology optimization.

引用本文

导出引用
尤芳;陈建军;曹鸿钧;谢永强. 稳态热传导结构非概率可靠性拓扑优化设计[J]. 振动与冲击, 2015, 34(3): 118-122
You Fang;Chen Jian-jun;Cao Hong-jun;Xie Yong-qiang. TOPOLOGY OPTIMIZATION DESIGN OF STEADY-STATE HEAT CONDUCTION STRUCTURES CONSIDERING NON-PROBABILISTIC RELIABILITY [J]. Journal of Vibration and Shock, 2015, 34(3): 118-122

PDF(962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/