本文基于聚氨酯发泡塑料的准静态压缩和落锤冲击试验,分析其在中低应变率下的力学性能和能量吸收性能,得到了该材料的应力-应变曲线和能量吸收图,研究了不同应变率和循环静动态试验对该材料缓冲性能的影响。随着初始应变率由 2.56×10-3 s-1 (准静态)增加至4.01×101s-1、5.08×101s-1 和5.68×101s-1 ,材料的应力和能量吸收明显增大,应变为0.4时动态应力分别比静态应力增加了54.34%、79.35%和114.49%,所吸收的能量分别比静态增加了18.98%、30.09%和65.74%。对同一材料先后进行五次循环准静态压缩或落锤冲击试验,与首次试验相比第二、三、四、五次试验应力和能量吸收明显下降,应变为0.4时静态应力分别下降了18.48%、32.97%、36.59%和39.49%,动态应力分别下降了20.81%、28.48%、34.75%和34.75%,准静态压缩能量吸收分别下降了24.54%、37.50%、40.74%和43.52%,落锤冲击能量吸收分别下降了15.30%、24.20%、30.25%和30.96%。中低应变率下,聚氨酯发泡塑料的应变率效应十分明显,循环准静态压缩和落锤冲击效应同样十分明显。循环试验达到一定次数后,材料缓冲性能基本保持不变,可用此数据作为缓冲包装设计的依据。研究结果对于聚氨酯发泡塑料的合理缓冲包装设计有指导意义。
Abstract
Based on quasi-static compression and drop hammer impact tests, the mechanical property and energy absorption of expanded polyurethane (EPU) were analyzed, and the stress-strain curve and energy absorption diagram were obtained at low and intermediate strain rates. The effects of different initial strain rates and cycling compression and impact tests on the cushioning properties of EPU were investigated. The stress and energy absorption of EPU increased obviously when the initial strain rate increased from 2.56×10-3 s-1 (quasi-static) to 4.01×101s-1, 5.08×101s-1 and 5.68×101s-1. Compared with the lowest initial strain rate, the stress increased respectively 54.34%, 79.35% and 114.49%, and the energy absorption 18.98%, 30.09% and 65.74% when the strain was 0.4. Five times cycling static compression or drop hammer impact tests were carried out on each sample. Compared with the first test, the stress and energy absorption of EPU in the rest tests declined obviously. When the strain was 0.4, the static stress declined respectively 18.48%, 32.97%, 36.59% and 39.49%, the dynamic stress 20.81%, 28.48%, 34.75% and 34.75%, the energy absorption in quasi-static compression 24.54%, 37.50%, 40.74% and 43.52%, and the energy absorption in drop hammer impact 15.30%, 24.20%, 30.25% and 30.96%. The effects of strain rate and cycling compression and impact on the cushioning property of EPU were obvious at low and intermediate strain rates. After some cycling static compression or drop hammer impact, the cushioning properties of EPU remained unchanged. So, we can design cushioning packaging according to the data. The results of this study can provide the reference for the design of EPU in cushioning packaging.
关键词
聚氨酯发泡塑料 /
应变率 /
循环试验 /
应力-应变曲线 /
能量吸收图
{{custom_keyword}} /
Key words
expanded polyurethane /
strain rate /
cycling test /
stress-strain curve /
energy absorption diagram
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gibson L J, Ashby M F. Cellular solids: structure and properties (second edition)[M]. Cambridge University Press, 1997.
[2] Wang Z-W, E Y-P. Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities[J]. Materials and design, 2011, 32: 3476-3485.
[3] E Y-P, Wang Z-W. Plateau stress of paper honeycomb as response to various relative humidities[J]. Packaging technology and science, 2010, 23(8): 471-483.
[4] Wang D-M, Wang Z-W. Experimental investigation into the cushioning properties of honeycomb paperboard[J]. Packaging technology and science, 2008, 21(6): 309-316.
[5] Wang D-M, Wang Z-W. Energy absorption diagrams of paper honeycomb sandwich[J]. Packaging technology and science, 2009, 22(2): 63-67.
[6] 王志伟,姚著. 蜂窝纸板冲击压缩的试验研究和有限元分析[J]. 机械工程学报,2012, 48(12): 49-55.
Wang Z-W, Yao Z. Experimental investigation and finite element analysis for impact compression of honeycomb paperboards[J]. Journal of mechanical engineering, 2012, 48(12): 49-55.
[7] E Y-P, Wang Z-W. Effect of relative humidity on energy absorption properties of honeycomb paperboards [J]. Packaging technology and science, 2010, 23(8): 471-483.
[8] 徐烁,王志伟. 基于湿度影响的蜂窝纸板动态压缩能量吸收图[J]. 振动与冲击,2012, 31(23): 203-206.
Xu S, Wang Z-W. Energy-absorption diagrams of honeycomb paperboards under dynamic compression in different relative humidities[J]. Journal of vibration and shock. 2012, 31(23): 203-206.
[9] Wang Z-W, E Y-P. Energy-absorbing properties of paper honeycombs at low and intermediate strain rates [J]. Packaging technology and science, 2012, 25: 173-185.
[10] 王志伟,彭春虎. 纸浆模塑制品冲击承载能力和能量吸收分析[J]. 应用力学学报,2013, 30(4): 593-597.
Wang Z-W, Peng C-H. Analysis of impact and load-carrying capacities and energy absorption of molded pulp products[J]. Chinese journal of applied mechanics, 2013, 30(4): 593-597.
[11] Wang Z-W, Li X-F. Effect of strain rate on cushioning properties of molded pulp products[J]. Materials & design, 2014, 57: 598-607.
[12] 叶晨炫,王志伟. EPE和EVA发泡缓冲材料吸能特性表征[J]. 包装工程,2012,33(1): 40-45.
Ye C-X, Wang Z-W. Energy absorption characteristics of EPE and EVA foam[J]. Packaging engineering, 2012,33(1): 40-45.
[13] 李俊, 高德, 王振林. 低密度聚乙烯泡沫塑料压缩本构关系的研究[J].包装工程, 2008, 29(12): 25-26, 58.
Li J, Gao D, Wang Z-L. Study of the constitutive relation of low density polyethylene foam under compression[J]. Packaging Engineering, 2008, 29(12): 25-26, 58.
[14] 饶聪超,姜献峰,李俊源,杨德伟,陈林林. 高密度聚乙烯结构发泡塑料拉伸本构关系的研究[J]. 中国塑料,2012, 26(7): 66-69.
Rao C-C, Jiang X-F, Li J-Y, Yang D-W, Chen L-L. Research on constitutive relation of high-density polyethylene structural foam under tensile[J]. China Plastics, 2012, 26(7): 66-69.
[15] 奚德昌,高德. 缓冲包装材料的本构建模研究进展[J]. 包装工程,2011, 32(1): 1-4.
Xi D-C, Gao D. The review on constitutive modeling of cushion packaging materials[J]. Packaging Engineering, 2011, 32(1): 1-4.
[16] 卢子兴,袁应龙. 高应变率加载下复合泡沫塑料的吸能特性及失效机理研究[J]. 复合材料学报,2002, 19(5): 114-117.
Lu Z-X, Yuan Y-L. Investigation into the energy absorption and failure characteristics of syntactic foams at high strain rates[J]. Acta Materiae Compositae Sinica, 2002, 19(5): 114-117.
[17] 林玉亮,卢芳云,王晓燕,等. 低密度聚氨酯泡沫压缩行为实验研究[J]. 高压物理学报,2006,20(1): 88-92.
Lin Y-L, Lu Y-F, Wang X-Y, et al. Compression behavior experimental study of Low density polyurethane foam[J]. Chinese journal of High pressure physics,2006, 20(1): 88-92.
[18] 胡时胜,刘剑飞,王悟. 硬质聚氨酯泡沫塑料的缓冲吸能特性评估[J]. 爆炸与冲击,1998,18(6): 42-47
Hu S-S, Liu J-F, Wang W. Evaluation of cushioning properties of rigid polyurethane foam plastics[J]. Explosion and Shock Waves, 1998,18(6): 42-47.
[19] 唐一科,龚宪生,顾乾坤. 聚氨酯泡沫塑料振动性能的试验研究[J]. 西南交通大学学报,2003,38(5): 497-500.
Tang Y-K, Gong X-S, Gu Q-K. Experimental investigation on vibration performance of polyurethane foam[J]. Journal of Southwest Jiaotong University, 2003,38(5): 497-500.
[20] 范俊奇,董宏晓,高永红,等. 高应变率下聚氨酯发泡塑料动态力学性能研究[J]. 建筑材料学报,2012,15(3): 356-360.
Fan J-Q, Dong H-X, Gao Y-H, et al. Study on dynamic mechanical properties of polyurethane foam materials under high strain rate[J]. Journal of Building Materials, 2012,15(3): 356-360.
[21] GB/T 4857.2-2005. 包装-运输包装件基本试验-第2部分:温湿度调节处理[S].
GB/T 4857.2-2005. Packaging - Basic tests for transport packages - Part 2: Temperature and humidity conditioning[S].
[22] GB/T 8168-2008. 包装用缓冲材料静态压缩试验方法[S].
GB/T 8168-2008. Test method of static compression for packaging cushioning materials[S].
[23] GB/T 8167-2008. 包装用缓冲材料动态压缩试验方法[S].
GB/T 8167-2008. Test method of dynamic compression for packaging cushioning materials[S].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}