基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究

项巍巍,蔡改改,樊 薇,黄伟国,朱忠奎

振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 34-39.

PDF(2810 KB)
PDF(2810 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 34-39.
论文

基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究

  • 项巍巍,蔡改改,樊  薇,黄伟国,朱忠奎
作者信息 +

The research of transient feature extraction based on double-TQWT and the application in bearing fault feature extraction

  • XIANG Wei-wei,CAI Gai-gai,FAN Wei,HUANG Wei-guo,ZHU Zhong-kui
Author information +
文章历史 +

摘要

因轴承的剥落、裂纹等局部故障易致运行时振动信号中出现瞬态成分,而轴承故障振动信号为非平稳信号,含高、低振荡成分,传统的线性信号处理方法及基于频率的分解方法均存在一定局限性。对此,研究基于信号振荡特征而非频率特征的双调Q小波变换,设定不同Q因子小波将轴承故障信号非线性分解成低、高振荡及噪声成分,轴承故障瞬态成分对应低振荡成分,提取低振荡成分即能实现轴承故障瞬态成分提取。通过轴承故障状态下瞬态成分检测表明,该方法能有效提取轴承故障瞬态成分。经与均值滤波、小波阈值及经验模态分解(EMD)等方法比较,验证该方法的优越性。

Abstract

Localized faults in rotating machinery parts tend to result in shocks and thus arouse transient impulse responses in the vibration signal. In order to realize bearing fault diagnosis under strong noise condition, it is crucial to extract fault feature from vibration signal. Yet, vibration signal is non-stationary signal, which consists of high and low resonance components, traditional linear methods and signal decomposition methods based on frequency all have some disadvantages. To overcome these disadvantages, a nonlinear signal analysis method named double tunable Q-factor wavelet transform (double-TQWT) is proposed,which is based on signal resonance characteristics rather than the frequency. By using the double-TQWT, the vibration signal is decomposed into high and low resonance components based on the different resonance characteristics. The transient feature has a low Q-factor and can be decomposed into low resonance component. Applications in extracting fault feature for bearing fault signals under strong noise condition, results show the new method outperforms the average filtering method,the wavelet threshold algorithm, and the EMD, further confirm the validity and superiority of this method for transient feature extraction.

关键词

滚动轴承 / 故障诊断 / 双调Q小波变换 / 振荡特征

Key words

rolling bearing / fault diagnosis / double-TQWT / resonance characteristic

引用本文

导出引用
项巍巍,蔡改改,樊 薇,黄伟国,朱忠奎. 基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究[J]. 振动与冲击, 2015, 34(10): 34-39
XIANG Wei-wei,CAI Gai-gai,FAN Wei,HUANG Wei-guo,ZHU Zhong-kui . The research of transient feature extraction based on double-TQWT and the application in bearing fault feature extraction[J]. Journal of Vibration and Shock, 2015, 34(10): 34-39

参考文献

[1]  王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报,2013, 49(1):63-72.
WANG Guo-biao,HE Zheng-jia,CHEN Xue-feng, et al. Basicresearch on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72.
[2]  郝如江,卢文秀,褚福磊.滚动轴承故障信号的数学形态学提取方法[J].中国电机工程学报,2008,28(26):  65-70.
HAO Ru-jiang, LU Wen-xiu, CHU Fu-lei. Mathematical morphology extracting method on roller bearing fault signals[J]. Proceedings of the CSEE, 2008, 28(26): 65-70.
[3]  王诗彬,许佳,朱忠奎. 瞬态成分参数的最小二乘法辨识及其轴承故障特征提取应用[J].机械工程学报,2014, 48(7): 68-76.
    WANG Shi-bin, XU Jia, ZHU Zhong-kui. LSM-based transient parameter identification and its application in feature extraction of bearing fault[J]. Journal of Mechanical Engineering, 2014, 48(7): 68-76.
[4]  He Qing-bo, Du Ru-xu. Mechanical watch signature analysis based on wavelet decomposition[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2009, 7(4): 491-512.
[5] Wang Shi-bin, Huang Wei-guo, Zhu Zhong-kui. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1299-1320.
[6]  Yan R Q, Gao R X. An efficient approach to machine health diagnosis based on harmonic wavelet packet transform[J]. Robotics and Computer-Integrated Manufacturing , 2005, 21(4): 291-301.
[7] Cao Hong-rui, Lei Ya-guo, He Zheng-jia. Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform[J]. International Journal of Machine Tools and Manufacture, 2013, 69:11-19.
[8]  Selesnick I W.Wavelet transform with tunable Q-factor
[J]. Ieee Transaction Signal Processing, 2011, 59(8): 3560-3575.
[9] Cai Gai-gai, Chen Xue-feng, He Zheng-jia. Sparsity- enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 34-53.
[10]  Selesnick I W. Resonance-based signal decomposition: a new sparsity-enabled signal analysis method[J]. Signal Processing, 2011, 91 (12): 2793-2809 .
[11] 唐进元,陈维涛,陈思雨,等.一种新的小波阈值函数及其在振动信号去噪分析中的应用[J]. 振动与冲击,2009, 28(7): 118-121.
TANG Jin-yuan, CHEN Wei-tao, CHEN Si-yu, et al. Wavelet-based vibration signal denoising with a new adaptive thresholding function[J]. Journal of Vibration and Shock, 2009, 28(7): 118-121.
[12] 沈长青,谢伟达,朱忠奎,等.基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J].振动与冲击, 2013, 32(2):39-43.
SHEN Chang-qing, XIE Wei-da, ZHU Zhong-kui,et al. Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method[J]. Journal of Vibration and Shock , 2013, 32(2): 39-43.

PDF(2810 KB)

Accesses

Citation

Detail

段落导航
相关文章

/