利用蜂窝多孔材料良好的抗冲击吸能特性,改进面内刚度较低难以承载缺点,设计具有宏观负、正泊松比效应的新型船用抗冲击与低频隔振性能兼顾的蜂窝基座。调节内外圆环封板、上下面板刚度可调节蜂窝基座的固有频率及承载性能;调节蜂窝胞元壁厚、胞元角度及层数可调节基座抗冲击特性及低频隔振性能。研究保持蜂窝芯总质量不变的蜂窝层数及胞元壁厚对基座隔振性能及抗冲击性能影响,给出蜂窝胞元壁厚对基座强度、固有频率、振级落差及抗冲击性影响曲线。
Abstract
Using cellular structure impact resistance, improving its poor stiffness shortcomings at the same time, this paper designed two types of ship vibration isolation shock honeycomb base with positive Poisson’s ratio effect and negative Poisson’s ratio effect. By adjusting the stiffness of base’s upper and lower panels, inside and outside closure plates, we can adjust the base natural frequencies and vibration isolation performance. By keeping the weight of honeycomb core, studied the effect of the thickness and layers of cellular unit on base isolation performance and impact resistance. The varying curves of isolator stress, natural frequency, vibration level, vibration level difference versus cell wall thickness were obtained and proved that cellular base has good impact resistance isolation and negative Poisson’s ratio has better performance.
关键词
船舶 /
振动 /
冲击 /
蜂窝基座
{{custom_keyword}} /
Key words
ship /
vibration /
impact /
cellular base
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jones R M,著. 朱颐龄,译.复合材料力学[M].上海:上海科学技术出版社,1981.
[2] 杜善义,吴林志. 复合材料的细观力学研究[C].科学技术面向新世纪学术年会, 1998.
[3] Andrews E W, Gioux G. Size elects in ductile cellular solids- part 2 experimental results[J]. International Jounal of Mechanical Sciences, 2001, 43: 701-713.
[4] Wang X L, Stronge W J. Micropolar theory for two-dimensional stresses in elastic honeyeomb[J]. Proceedings of the Royal Soeiety of London Series a-Mathematical Physical and Engneering Sciences, 1999, 1986, (455):2091-2116.
[5] Banerjee S, Bhaskar A. Free vibration of cellular structures using continuum modes[J]. Journal of Sound and Vibration, 2005, 287 (l/2):77-100.
[6] Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb-part I: crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences,2002,44(8): 1665-1696.
[7] Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb-part II: application to impact[J]. International Journal of Mechanical Sciences, 2002,44 (8):1697-1714.
[8] 陈金宝,聂宏,赵金才. 月球探测器软着陆缓冲机构着陆性能分析[J]. 宇航学报,2008, 29(6): 1729-1732.
CHEN Jin-bao, NIE Hong, ZHAO Jin-cai. Lunar probe soft landing landing buffering mechanism performance analysis[J]. Journal of Astronautics, 2008, 29(6): 1729-1732.
[9] 赵留平. 基于夹层板的浮筏隔振系统有限元分析[J]. 中国舰船研究,2010, 5(3): 43-46.
ZHAO Liu-ping. Finite element analysis of the floating raft isolation system based on sandwich plate[J]. Chinese Journal of Ship Research, 2010, 5(3): 43-46.
[10] 张梗林,杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击,2013,32(22): 68-72.
ZHANG Geng-lin, YANG De-qing. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of vibration an shock, 2013,32(22): 68-72.
[11] BV/0430,冲击安全性(前联邦德国国防军舰艇建造规范)[S]. 北京: 中国舰船研究院科技发展部,1998.
[12] GJB1060.1-91,舰船环境条件要求-机械环境[S].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}