基于模糊可靠度的SRC框架结构优化设计研究

郑山锁,王晓飞,何 伟,王 帆

振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 88-94.

PDF(1573 KB)
PDF(1573 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 88-94.
论文

基于模糊可靠度的SRC框架结构优化设计研究

  • 郑山锁,王晓飞,何  伟,王  帆
作者信息 +

Optimization design for src frame structure based on the fuzzy reliability

  • ZHENG Shan-suo,WANG Xiao-fei,HE Wei,WANG Fan
Author information +
文章历史 +

摘要

基于“投资-效益”准则,建立SRC框架结构的优化数学模型,优化目标包括初始造价及结构失效损失期望最小化两部分。利用加权系数调整两者重要程度。为获得结构失效损失期望值计算结构失效概率;为获得接近实际的失效概率,对SRC框架结构进行模糊可靠度分析,主要内容包括:确定SRC框架结构抗震目标性能水平量化值,建立结构模糊功能函数,提出考虑模糊性Monte Carlo法。将SRC框架结构优化过程调整为含内外两层的迭代过程,外层对优化模型进行计算,内层对结构进行模糊可靠度分析。考虑优化模型中设计变量、约束条件过多、目标函数非线性程度较高等特点,提出适用于SRC框架结构的分阶段优化计算方法。通过对一榀单跨三层SRC框架结构优化设计,表明所提优化方法可获得理想、可靠的设计效果。

Abstract

Based on ‘‘investment - benefit’’ rule, optimization mathematical model of SRC frame structure is established. Optimization objectives include the initial cost minimization and the structural failure loss minimization, and the weighed coefficient is used to adjust the importance of the both. In order to obtain the structural loss expectation, firstly, the failure probability of structures is calculated. In order to obtain more close to the actual failure probability, fuzzy reliability analysis of SRC frame structure is performed. The main contents of fuzzy reliability analysis include: determining the seismic performance level quantification value of SRC frame structure; establishing structural fuzzy function; Monte Carlo method is proposed considering the fuzziness. Adjusts SRC frame structure optimization process to a two level iteration process, in which, the outer layer for optimization design, the inner layer for the structural reliability analysis. Considering that design variables and constraint conditions is too much and the nonlinear degree of constraint conditions and objective function is higher, phase-in optimization calculation method for SRC frame structure is put forward. Finally, the optimization design of a one-bay-three-story SRC frame is implemented, optimization results show that the optimization method proposed in the paper can obtain ideal and reliable design results.

关键词

SRC框架 / 优化设计 / 模糊数学 / 可靠度 / 分阶段优化

Key words

SRC frame / optimization design / fuzzy mathematics / reliability / phase-in optimization

引用本文

导出引用
郑山锁,王晓飞,何 伟,王 帆. 基于模糊可靠度的SRC框架结构优化设计研究[J]. 振动与冲击, 2015, 34(10): 88-94
ZHENG Shan-suo,WANG Xiao-fei,HE Wei,WANG Fan. Optimization design for src frame structure based on the fuzzy reliability[J]. Journal of Vibration and Shock, 2015, 34(10): 88-94

参考文献

[1] Ang A H S, Lee J C. Cost optimal design of R/C buildings[J]. Reliability Engineering and System Safety, 2001, 73:233-238.
[2] 李刚, 程耿东. 基于性能的结构抗震设计—理论、方法与应用[M]. 北京:科学出版社, 2004.
[3] 邓国专. 型钢高强高性能混凝土结构力学性能及抗震设计的研究[D]. 西安: 西安建筑科技大学, 2008.
[4] 高小旺,刘佳,高炜. 不同重要性建筑抗震设防标准的讨论[C]. 北京:城市与工程减灾基础研究论文集[A].北京:中国科技出版社, 1997.
[5] 王光远. 抗震结构的最优设防烈度与可靠度[M]. 北京: 科学出版社, 1999.
[6] Chan C M, Zou X K. Elastic and inelastic drift performance optimization for reinforced concrete buildings under earthquake loads [J]. Earthquake Eng. Struct. Dyn., 2004, 33:929-950.
[7] GB50068-2001,建筑结构可靠度设计统一标准[S].
[8] JGJ138-2001,型钢混凝土组合技术规程[S].
[9] GB50011-2010,建筑抗震设计规范[S].
[10] GB50010-2010,混凝土结构设计规范[S].
[11] 陶清林,郑山锁,胡义,等. 型钢混凝土柱多目标优化设计方法研究[J]. 工业建筑, 2010, 11(40):126-130.
    TAO Qing-lin, ZHENG Shan-suo, HU Yi, et al. Study on multi-objective optimization design method for SRC columns [J]. Industrial Construction, 2010, 11(40):126-130.
[12] Ringertz U T. On methods for discrete structural optimization [J]. Eng. Opt., 1988,13(1):47-64.
[13] Royset J O, Kiureghian A D,Polak E. Reliability-based optimal design of series structural systems[J]. Journal of Engineering Mechanics, 2001,127(6):607-614.

PDF(1573 KB)

473

Accesses

0

Citation

Detail

段落导航
相关文章

/