通过对多点激励功率谱再现振动试验控制算法研究.设计基于偏相干分析理论的振动试验系统频响矩阵辨识策略,针对系统频响矩阵存在奇异点及系统频响矩阵为长方矩阵情形,设计基于求解频响矩阵广义逆和矩阵最小范数最小二乘解的Moore-Penrose逆系统解耦算法。针对传统差分修正驱动谱控制算法中存在系统功率谱自谱为负数或零值问题,通过引进比例均方根反馈修正算法,设计改进的功率谱均衡控制策略,有效避免功率谱均衡过程中自谱产生负值或零值问题。多点激励功率谱再现振动试验表明,改进的功率谱均衡控制策略对多点激励系统具有可靠、高精度的控制效果。
Abstract
Through the control algorithm research on multi-exciter PSD (power spectral density) replication of vibration test designed an identification strategy for the frequency response matrix of the vibration test system based on partial coherence analysis. For the situations of singular points existing in the system frequency response matrix and the matrix being rectangular, respectively designed different system decoupling algorithms upon the solution of the matrix generalized inverse and its Moore-Penrose inverse with minimum norm and least squares solution. And for the situation that the system APSD (auto-power spectral density) might be negative or zero in the traditional difference correction of the drive spectral control algorithm, designed an improved PSD equalization strategy by introducing a proportional RMS feedback correction algorithm. The algorithm could effectively avoid the APSD being negative and zero in the process of PSD equalization. Through the multi-exciter PSD replication test, it’s indicated that the improved PSD equalization strategy can achieve a reliable, high-precision control effect in the multi-exciter vibration system.
关键词
偏相干分析 /
系统解耦 /
比例均方根反馈修正 /
功率谱均衡
{{custom_keyword}} /
Key words
partial coherence analysis /
system decoupling /
proportional RMS feedback correction /
PSD equalization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王述成. 振动试验实时控制系统的研究[D]. 杭州:浙江大学,2006.
[2] 齐晓军. 航天器振动试验控制技术研究[D]. 长沙:国防科学技术大学,2011.
[3] 王珂晟,雷勇军,朱晓莹. 系统级产品振动试验的探讨与研究[J]. 振动与冲击, 2004, 23(4): 112-115.
WANG Ke-sheng, LEI Yong-jun, ZHU Xiao-ying. Investigation on vibration testing for system_level equipments [J]. Journal of Vibration and Shock,2004, 23(4):112-115.
[4] Smallwood D O. Multiple shaker random control with cross coupling [A]. Proceedings of the IES[C].1978: 341-347.
[5] Smallwood D O. Random vibration testing of a single test item with a multiple input control system[A]. Proceedings of the IES[C].1982: 42-49.
[6] Smallwood D O, Woodall T D, Buksa E J. Minimum driver requirements for a multiple input multiple output linear system [A]. Proceedings of the IES[C].1986: 295-301.
[7] Smallwood D O. Multiple shaker random vibration control-an update [A]. Proceedings of the IEST[C].1999:212-221.
[8] Underwood M A, Keller T. Recent system developments for multi-actuator vibration control[J]. Sound and Vibration, 2001, 35(10):16-23.
[9] Underwood M A. Adaptive control method for multiexciter sine tests[P]. United States Patient:5299459, 1994-04-05.
[10] Underwood M A,Keller T. Apparatus and method for adaptive closed loop control of shock testing system[P]. United States Patent, 5517426, 1996-00-00.
[11] 陈家焱. 多点激励振动试验系统的控制策略研究[D]. 杭州:浙江大学,2011.
[12] 贺旭东,陈怀海. 多点随机振动控制中的互谱矩阵研究[J].南京航空航天大学学报,2004, 36(6): 744-747.
HE Xu-dong, CHEN Huai-hai. Cross-spectra in multiple shaker random vibration test [J]. Journal of Nanjing University of Aeronautics & Astronautics,2004,36(6):744-747.
[13] 贺旭东,陈怀海. 一种多点随机振动试验控制的新方法研究[J]. 振动工程学报,2004, 17(1): 49-52.
HE Xu-dong, CHEN Huai-hai. A new method for the control of multi-shakers in random vibration tests[J]. Journal of Vibration Engineering, 2004, 17(1): 49-52.
[14] 叶建华,李传日. 多点随机振动试验控制技术[J]. 系统工程与电子技术,2008, 30(1):124-127.
YE Jian-hua, LI Chuan-ri. Systems engineering and electronics[J]. Journal of Systems Engineering and Electronics, 2008, 30(1):124-127.
[15] 陈家焱,王海东,周建川,等. 多点激励振动试验控制技术进展[J]. 振动与冲击,2011, 30(3): 69-73.
CHEN Jia-yan, WANG Hai-dong, ZHOU Jian-chuan, et al. Progress in multi-exciter vibration testing control technology [J]. Journal of Vibration and Shock, 2011, 30(3): 69-73.
[16] 马忠成. 偏相干方法分析及其工程应用[J]. 应用声学, 1994, 13(3): 25-30.
MA Zhong-cheng.
[17] 赵海澜,汪鸿振. 偏相干分析识别噪声源的计算[J].噪声与振动控制,2005(5):31-33.
ZHAO Hai-lan, WANG Hong-zhen. Calculation of identifying noise source based on partial coherence analysis [J]. Noise and Vibration Control,2005(5): 31-33.
[18]贝达特J S,皮尔索A G. 相关分析和谱分析的工程应用[M]. 北京:国防工业出版社,1983.
[19] 贺旭东,陈怀海,申凡,等. 双振动台随机振动综合控制研究[J]. 振动工程学报, 2006, 19(2): 145-149.
HE Xu-dong, CHEN Huai-hai, SHEN Fan, et al. Study on dual-shaker random vibration test control[J]. Journal of Vibration Engineering, 2006, 19(2): 145-149.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}