将管道理论引入叠层板状结构的流致振动研究,在势流理论下,基于输流管道的哈密顿原理,建立悬臂支承叠层板状结构的流致振动模型,用微分求积法对模型的运动方程进行离散,运用特征值分析与响应分析结合的方法,确定系统失稳的临界流速与形式,并研究不同参数对稳定性的影响。结果表明,悬臂叠层板发生颤振失稳,间隙,管/液质量比,间隙和流速非对称参数对颤振流速有一定的影响,但在本文研究参数范围内对系统失稳形式没有影响。
Abstract
The pipe theory is introduced into the flow-induced vibration research of a laminated plate-type structure. The mechanical model is set to describe the plate-type structure in potential flow. The dynamic equation is deduced based on Hamilton principle. The differential quadrature method is used to solve the differential equations. And the effects of various parameters on instability are investigated. The results show that the cantilevered model has the flutter over the critical velocity. And the parameters of the gap, mass ratio, gap asymmetrical parameter and velocity asymmetrical parameter have influence on the flutter velocity. But those have no effect on the instability mode in the range considered for the parameters .
关键词
稳定性 /
微分求积法 /
叠层板 /
不可压缩流 /
临界流速
{{custom_keyword}} /
Key words
stability /
differential quadrature method /
plate-type structure /
uncompressible flow /
critical flow velocity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范晨光, 杨翊仁. 叠层板状结构流致振动特性研究[J]. 工程力学, 2007, 24(1): 31-36.
Fan Chenguang, Yang Yiren. Study on Flow-induced Vibration of A Laminated-plate-type Structure. Engineering mechanics. 2007, 24(1): 31-36.
[2] 郭长青, 张兆湘, 邹长川. 叠层板型元件模型干模态固有频率与振型分析[J]. 中南工学院学报. 1995, 9(1):18-23.
Guo Changqing, Zhang zhaoxiang. Zou Changcuang. Analysis on dry-modal natural frequencies and modes of an experimental model for parallel-plate assembly [J].Journal of Central-South Institute of Technology, 1995, 9(1): 17~23.
[3] Guo C Q and Peng R H and Sun D L. A Dynamic Model for Flow-Induced Vibration of Parallel Plate Fuel Assemblies[C]. Transaction of the 12th International Conference on Structural Mechanics in Reactor Technology, Stuttgart, 1993.
[4] Yang Y R and Zhang J Y, Frequency Analysis of a Parallel Flat Plate-Type Structure in Still Water, Part I: a Multi-Span Beam[J]. Journal of Sound and Vibration. 1997, 203(5): 795-804.
[5] Yang Y R and Zhang J Y. Frequency Analysis of a Parallel Flat Plate-Type Structure in Still Water, Part II: a Complex structure[J]. Journal of Sound and Vibration. 1997, 203(5): 805-814.
[6] 杨翊仁, 张继业, 马建中. 不可压缩粘性流中板状梁的附加质量及阻尼[J]. 核动力工程.1998,19(5):443-449.
Yang Yiren, Zhang Jiye, Ma Jianzhong. Added Mass and Damping of Plate-Type Beam vibrating in Incompressible Viscous Fluid[J]. Nuclear Power Engineering.1998,19(5):443-449.
[7] 鲁丽,杨翊仁. 矩形管内不可压缩粘性流中简支梁的稳定性[J]. 西南交通大学学报.2001,36(6): 561-564.
Lu li, Yang Yiren. Stability of pinned-pined beam in a rectangular tube filled with incompressible viscous fluids [J]. Journal of Southwest Jiaotong University, 2001, 36(6): 561-564.
[8] 陈贵清,杨翊仁. 板状梁结构流致振动及其稳定性分析. 河北理工学院学报.2002,4: 105-113.
Chen Guiqing, Yang Yiren. Study on flow-induced vibration and stability for a plate-type beam structure [J]. Journal of Hebei Technology college, 2002, 4: 105-113.
[9] 陈贵清,杨翊仁. 受非线性支承的板状梁结构流致振动研究[J]. 固体力学学报.2003,24(3): 277-283.
Chen Guiqing, Yang Yiren. Study on flow-induced vibration for a plate-type beam structure with nonlinear support [J]. Acta Mechanica Solida Sinica, 2003, 24(3):277~283.
[10] Chen G Q and Yang Y R.. Flow-induced Vibration of A Plate-type Beam with Elastic Support[C]. ICVE’2002, Nanjing, China, 108-111.
[11] S S Chen. 圆柱型结构的流体诱发振动. 石油工业出版社.1993.
S S Chen. Flow induced vibration of Cylindrical structure [M], Petroleum Industry Press.1993.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}