地面效应对近流线型断面涡激共振性能的影响

周志勇1,2 毛文浩3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 168-174.

PDF(2367 KB)
PDF(2367 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 168-174.
论文

地面效应对近流线型断面涡激共振性能的影响

  • 周志勇1,2   毛文浩3
作者信息 +

Ground effects on  vortex-induced vibrations of a closed box girder

  • ZHOU Zhiyong1,2,MAO Wenhao3
Author information +
文章历史 +

摘要

当桥面接近地面时,地面的存在会使断面的绕流情况与远离地面时不同,有可能对主梁在风荷载作用下的静力和动力响应产生不利的影响,而主梁离地高度将成为影响主梁气动性能的重要因素。本文基于风洞试验和计算流体动力学(CFD)相结合的方法,对存在地面效应的近流线型断面的涡激共振性能进行研究。首先,基于风洞试验获得近流线型断面在两种粗糙度地面、三种风攻角、四种离地高度下的涡激共振区间和振幅及其随离地高度的变化规律,试验结果表明,地面效应会使得涡激共振区间提前但涡激共振幅值有所减小。其次,采用CFD识别各试验工况下的断面的绕流特征、锁定区间和最大振幅,并通过静态和动态流场可视化分析,分析了地面效应对近流线型断面涡激振动的影响机理。
 

Abstract

As many existing or under-construction bridges are of lower height from the ground,the ground may have an adverse influence on the aerostatic and aerodynamic performances of bridges under wind loads. Wind tunnel tests and numerical simulations were adopted to study the ground effects on the vortex-induced vibrations of a closed box girder for illustration. The lock-in phenomena of vortex-induced vibrations  over a range of wind velocities,the maximum amplitudes and their correlation with the height of the closed box girder apart from the ground under two different ground roughnesses were investigated by wind tunnel tests.The results show that the ground effect  makes the vortex-induced phenomena occur in advance.Moreover,CFD   (computational fluid dynamic) numerical simulations were carried out to study the lock-in phenomena,the maximum amplitudes and their correlation  with the height of the girder under two different ground roughnesses.Through the CFD analysis on the flow fields around the girder,the mechanism of ground effect on the vortex-induced vibrations of   closed box girders was described.

关键词

地面效应
/ 近流线型断面 / St数 / 涡激共振 / 机理

Key words

ground effect / closed box girder / St number / vortex-induced vibration / mechanism

引用本文

导出引用
周志勇1,2 毛文浩3. 地面效应对近流线型断面涡激共振性能的影响[J]. 振动与冲击, 2017, 36(6): 168-174
ZHOU Zhiyong1,2,MAO Wenhao3. Ground effects on  vortex-induced vibrations of a closed box girder[J]. Journal of Vibration and Shock, 2017, 36(6): 168-174

参考文献

1. Mokry M. Numerical simulation of aircraft trailing vortices interacting with ambient shear or ground[J]. Journal of aircraft, 2001, 38(4): 636-643.
2. Barber T. Aerodynamic ground effect: a case study of the integration of CFD and experiments[J]. International journal of vehicle design, 2006, 40(4): 299-316.
3. Park K, Lee J. Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effect[J]. Journal of mechanical science and technology, 2008, 22(12): 2578-2589.
4. Prasad R. Computational Modeling Of Wing In Ground Effect Aerodynamics[D]. Indian Institute of Technology, Gandhinagar, 2014.
5. 王刚, 叶正寅, 陈迎春. 基于N_S方程的地面效应模拟[J]. 飞行力学, 2001, 19(1): 38-41.
WANG Gang, YE Zhengyin, CHEN Yingchun. The simulation of ground effect based on N-S equations[J]. FLIGHT DYNAMICS, 2001, 19(1) : 38-41 (in Chinese)
6. 岳锋, 石亚军, 李凤蔚. 基于N-S方程的地面效应数值模拟研究[J]. 航空计算技术, 2005, 35(2): 63-65.
YUE Feng, SHI Ya jun, LI Feng wei. Simulation of Wing in Ground Effect Based on N-S Equations[J]. Aeronautical Computer Technique, 2005, 35(2): 63-65 (in Chinese)
7. 应成炯, 杨韡, 杨志刚. 地面效应下的机翼失速数值模拟[J]. 飞行力学, 2010, 28(5): 9-15.
Ying Chengjiong, Yang Wei, Yang Zhigang. Numerical simulation stall ofwing in ground effect[J]. FLIGHT DYNAMICS, 2010, 28(5): 9-15
8. 龚军锋, 祝小平, 周洲. 基于结构动网格的无人机地面效应研究[J]. 航空工程进展, 2012, 3(3): 263-268.
Gong Junfeng, Zhu Xiaoping, Zhou zhou. Research on ground effect of unmanned aerial vehicle based on dynamic structural grid[J]. Advance in aeronautical science and engineering, 2012, 3(3): 263-268 (in Chinese)
9. 屈秋林, 刘沛清, 秦绪国. 地效飞行器大迎角近地面飞行分离流动数值研究[J]. 航空学报, 2007, 28(1):72-78.
QU Qiulin, LIU Peiqing, QIN Xuguo. Numerical research on separated flow around a WIG craft in flight close to ground at high incidence angle[J]. Acta Aeronautica et Astronautics Sinica, 2007, 28(1):72-78 (in Chinese)
10. 杨韡, 杨志刚. 三维地效翼展向效应数值模拟[J].计算机辅助, 工程, 2008,17 (03): 13-17
Yang W, Yang Z G. Numerical simulation on span dominated ground effect of 3D winging round effect[J]. Computer Aided Engineering, 2008, 17(03): 13-17. (in Chinese)
11. 张斌, 徐敏, 谢亮. 地效对二维气动弹性特性的影响[J]. 航空学报, 2014, 35(8):2156-2162.
Zhang Bin, Xu ming, Xie liang. Influence on Two Dimensional Aeroelastic Characteristics in Ground Effect[J]. Acta Aeronautica Astronautica Sinica, 2014, 35(8):2156-2162. (in Chinese)
12. Lee J, Han C S, Bae C H. Influence of wing configurations on aerodynamic characteristics of wings in ground effect[J]. Journal of Aircraft, 2010, 47(3): 1030-1036
13. Mahon S, Zhang X. Computational analysis of pressure and wake characteristics of an aerofoil in ground effect. Journal of Fluids Engineering, 2005, 127(2): 290-298.
14. Justin G, Lance W. Traub. Experimental and Theoretical Investigation of Ground Effect at Low Reynolds Numbers[J]. Journal of Aircraft, 2012, 49(2):576-586.
15. 杨美,杨韡,杨志刚. 地效翼地面粘性效应风洞试验研究[J]. 空气动力学学报,2015, 33(1):82-86
Yang M, Yang W, Yang Z G. Wind tunnel test of groud viscous effect on wing aerodynamics[J]. Acta Aerodynamica Sinica, 2015, 33(1): 82-86
16. Yang W, Yang Z G. Aerodynamic investigation on design of tiltable end plate flow wingcraft[J]. Aircraft Enginnering and Aeros, 2014,84(1):4-12
17. Marshall D W,Newman S J,Williams C B.Boundary layer effects on a wing in ground effect[J]. Aircraft Engineering and Aerospace Technology,2010,82(2):99-107
18. Yang Z G, Yang W, Jia Q. Ground viscous effect on 2D flow of wing in ground proximity[J]. Engineering Applications of Co mputational Fluid Mechanics, 2010, 4(4): 521-529.
19. Diana G, Rocchi D, Argentini T, Muggiasca S. Aerodynamic instability of a bridge deck section model: linear and nonlinear approach to force modeling[J]. J. Wind Eng. Ind. Aerodyn., 2010, 98(6–7):363–374.
20. Diana G, Resta F, Rocchi D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J]. J. Wind Eng. Ind. Aerodyn., 2008, 96 (10-11) :1871–1884.
21. Diana G, Fiammenghi G, Belloli M, Rocchi D. Wind Tunnel tests and numerical approach for long span bridges: the Messina bridge[J]. J. Wind Eng. Ind. Aerodyn., 2013, 12(2):38-49.
22. El-Gammal M, Hangan H and King P. Control of vortex shedding-induced effects in a sectional bridge model by spanwise perturbation method[J]. J. Wind Eng. Ind. Aerodyn., 2007, 95(8):663-678.
23. Sanchez-Sanz M, and Velazquez A. Vortex-induced vibration of a prism in internal flow[J]. J. Fluid. Mech., 2009, 641(1):431-440.
24. Sarwar M W and Ishihara T. Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures[J]. J. Wind Eng. Ind. Aerodyn., 2010, 98(12):701-711.
25. Teng Wu and Ahsan Kareem. Vortex-Induced Vibration of Bridge Decks: Volterra Series-Based Model[J], J. Eng. Mech., 2013, 139(2): 1831-1843.
26. Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annu. Rev. Fluid Mech., 2004, 36(1):413–455
27. Zhiyong Zhou, Ting Yang, Quanshun Ding and Yaojun Ge. Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures[J]. Wind and Structures, 2015,20(5):643-660

PDF(2367 KB)

Accesses

Citation

Detail

段落导航
相关文章

/