基于Rayleigh法的独塔非对称悬索桥基频简化算法

杨国俊1,2,唐光武1,杜永峰2,郝宪武3,李子青3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 234-242.

PDF(1312 KB)
PDF(1312 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 234-242.
论文

基于Rayleigh法的独塔非对称悬索桥基频简化算法

  • 杨国俊1,2,唐光武1,杜永峰2,郝宪武3,李子青3
作者信息 +

Simplified algorithm for the fundamental frequency of asymmetric single-tower-suspension bridges based on Rayleigh method

  • YANG Guojun1,2,TANG Guangwu1,DU Yongfeng2,HAO Xianwu3,LI Ziqing3
Author information +
文章历史 +

摘要

为了便于计算独塔非对称悬索桥振动基频,采用Rayleigh法分别推导了一阶正、反对称竖弯及扭转振动基频估算公式,考虑了不对称跨径布置对振动基频的影响,并提出了非对称独塔悬索桥合理的跨径比例。将表征跨径关系的参数k取1即可得到独塔双跨对称悬索桥的基频估算公式,最后通过有限元法验证估算公式的有效性和可靠性。研究结果表明:独塔非对称悬索桥一阶正、反对称竖弯、扭转频率的有限元解和文中解的误差都在10%以内,表明推导的估算公式解与有限元解误差能满足设计阶段的要求,最后讨论了跨径相关系数变化对竖弯和扭转基频的影响并给出了合理边中跨比的建议,该公式可以方便指导独塔悬索桥方案设计和动力计算。

Abstract

In order to calculate the vibration frequencies of an asymmetric single-tower suspension bridge rapidly, frequency formulas for 1st vertical and torsional vibration modes were derived based on the Rayleigh method considering the influence of asymmetric span, and the reasonable span ratio of the asymmetric single-tower suspension bridge was put forward.The estimation of the fundamental frequency of the single-tower suspension bridge with symmetric double-span could also be obtained by taking the value of some related parameter to be 1 in the calculation formula for the asymmetric side-tower suspension bridge.The validity and reliablity of the proposed formulas were verified by the finite element method (FEM).The results show that the errors of both the 1st anti-symmetric and the 1st symmetric vertical and torsional vibration frequencies calculated by the proposed method are less than 10%, as compared with the FEM results, which can meet the design requirement.The influence of the span correlation coefficient on the fundamental frequency was discussed and the reasonable side-middle span ratio was suggested.The results indicate that the proposed simplified method can be applied to guide the scheme design and dynamic calculation of single-tower suspension bridges.

关键词

桥梁工程 / 非对称悬索桥 / Rayleigh法 / 独塔悬索桥 / 自由振动 / 基频

Key words

bridge engineering / asymmetric bridge engineering / Rayleigh method / single-tower suspension bridge / free vibration / fundamental frequency

引用本文

导出引用
杨国俊1,2,唐光武1,杜永峰2,郝宪武3,李子青3. 基于Rayleigh法的独塔非对称悬索桥基频简化算法[J]. 振动与冲击, 2020, 39(2): 234-242
YANG Guojun1,2,TANG Guangwu1,DU Yongfeng2,HAO Xianwu3,LI Ziqing3. Simplified algorithm for the fundamental frequency of asymmetric single-tower-suspension bridges based on Rayleigh method[J]. Journal of Vibration and Shock, 2020, 39(2): 234-242

参考文献

参考文献:
[1] Ren W X, Blandford G E, Harik I E. Finite-element model and free vibration response [J].Journal of Bridge Engineering, 2004,9(2):110-118.
[2]张超,黄群君,许莉.考虑主塔刚度影响的三塔自锚式悬索桥竖弯频率计算公式[J].长安大学学报(自然科学版),2014,34(6):100-106.
ZHANG Chao, HUANG Qunjun ,XU Li. Frequency formulas for vertical vibration of three-tower self- anchored suspension bridge considering tower stiffness influence[J].Journal of Chang’an university: Natural Science Edition,2014,34(6):100-106.(in Chinese)
[3] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002:272-275
LI Guohao.Stability and vibration of bridge structures [M].Beijing: China Railway Publishing House, 2002.(in Chinese)
[4] 彭旺虎,邵旭东.悬索桥纵向和竖向耦合自振研究[J].工程力学,2012,29(2):142-148.
PENG Wanghu,SHAO Xudong. Study on longitudinal and vertical coupling vibration of suspension bridges [J].Engineering Mechanics,2012,29(2):142-148.(in Chinese)
[5]刘春城,张哲,石磊,等.混凝土自锚式悬索桥竖向自由振动的理论研究[J].工程力学,2005,22(4):126-130.
LIU Chuncheng ZHANG Zhe,SHI Lei,et al.Theoretical study of vertical free vibration of concrete self-anchored suspension bridges[J]. Engineering Mechanics,2005,22 (4): 126-130. (in Chinese) 
[6]周大兴,闫维明,钱增志.大行程板式铅阻尼器在独塔自锚式悬索桥中的应用研究[J].地震工程与工程振动,2017,37(5):69-75.
ZHOU Daxing,YAN Weiming,QIAN Zengzhi. Application research on the large stroke plate-type lead damper in a self-anchored suspension bridge with single-tower[J].Earthquake Engineering and Engineering Dynamic, 2017,37(5):69-75. (in Chinese)  
[7]贺星新,李爱群,李建慧,等.土-桩-结构相互作用对独塔自锚式悬索桥地震响应的影响[J].东南大学学报:自然科学版,2014,44(1):150-154.
HE Xingxin,LI Aiqun,LI Jianhui.et al. Influence of soil-pile-structure interaction on seismic response on self-anchored suspension bridge with single-  tower[J].Journal of Southeast University: Natural Science Edition,2014,44 (1):150-154. (in Chinese)
[8]蒋望,邵旭东,彭旺虎,等.独塔悬索桥基本参数研究[J].湖南大学学报:自然科学版,2011,38(6):13-19.
JIANG Wang,SHAO Xudong,PENG Wanghu,et al. Research on suspension bridges with a single-tower [J].Journal of Hunan University:Natural Sciences, 2011,38 (6):13-19. (in Chinese) 
[9]刘春华,秦权.桥梁结构固有频率的统计特征[J].中国公路学报,1997,10(4):49-54.
LIU Chunhua, QIN Quan. Statistics of natural frequencies for bridge structures[J]. China Journal of Highway and Transport, 1997,10(4):49-54. (in Chinese) 
[10]闫维明,石鲁宁,何浩祥,等.完全弹性支承变截面梁动力特性半解析解[J].振动与冲击,2015,34 (14):76-84.
YAN Weiming,SHI Luning,HE Haoxiang, et al. Semi- analytical solution of dynamic characteristics of non-uniform beams with complete elastic supports [J].Journal of Vibration and Shock, 2015,34 (14):76-84.
[11]LI X F, KANG Y A, WU J X. Exact frequency equations of free vibration of exponentially functionally graded beams[J].Applied Acoustics, 2013, 74 (3) : 413-420. (in Chinese) 
[12]TANG A Y, WU J X, LI X F et al. Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams[J].International Journal of Mechanical Sciences,2014, 89(3):1-11.
[13]冀伟,刘世忠,蔺鹏臻. 波形钢腹板PC连续箱梁桥自振频率分析与试验研究[J].中南大学学报:自然科学版,2016,47(4):1297-1304.
JI Wei,LIU Shizhong,LIN Pengzhen. Analysis and experimental study on nature vibration frequencies of PC continuous box girder bridge with corrugated steel webs[J]. Journal of Central South University : Science and Technology, 2016,47(4):1297-1304. (in Chinese) 
[14]项贻强,邱政,Bishnu Gupt Gautam.考虑滑移效应的体外预应力钢-混凝土组合梁自振频率分析[J].东南大学学报:自然科学版,2017,47( 1):107-111.
XIANG Yiqiang,QI Zheng, Bishnu Gupt Gautam. Analysis on natural frequencies of steel-concrete composite beam with external prestressed tendons considering slip effects[J]. Journal of Southeast University: Natural Science Edition ,2017,47 ( 1):107-111. (in Chinese) 
[15]张书兵,王景全,李明,等.考虑界面滑移效应的组合梁自振频率计算的修正折减刚度法[J].土木工程学报,2015,48(12):41-49.
ZHANG Shubing,WANG Jingquan,LI Ming,et al. A modified stiffness reduction method for calculating the natural frequencies of composite beams considering the effect of interfacial slippage[J]. China Civil Engineering Journal, 2015,48(12):41-49. (in Chinese) 
[16]杨美良,钟放平,张建仁.考虑剪切变形影响的斜梁桥自振频率的解析方法[J].工程力学,2013,30 (2): 104-111.
YANG Mei-liang,ZHONG Fang-ping,ZHANG Jian-ewn. Theoretical method for determining the vibration frequency of skewed girder bridges including shear deformation effect[J]. Engineering Mechanics, 2013,30 (2):104-111. (in Chinese) 
[17]中华人民共和国交通部.公路桥梁抗风设计规范(JTG/TD60-01-2004)[S].北京:人民交通出版社, 2004:16-17.
Ministry of Transportation of the People,s Republic of China. Wind-resistant design specification for highway bridges (JTG/TD60-01-2004)[S].Beijing: China Communications Press,2004:16-17. (in Chinese) 
[18]谢官模,王超.大跨度悬索桥竖向振动基频的实用近似计算公式[J].固体力学学报, 2008,29 (12):200-203.
XIE Guan-mo, WANG Chao. Approximate formula of fundamental vertical frequencies of large-span suspension bridge [J].Chinese Journal of Solid Mechanics, 2008, 29(12):200-203. (in Chinese) 
[19]鞠小华,廖海黎,沈锐利.对悬索桥对称竖弯基频近似公式的修正[J].土木工程学报, 2002,35(1):44-49.
JU Xiaohua, LIAO Haili, SHEN Ruili. Modification on simplified formula of symmetric-vertical natural frequencies for suspension bridges[J].China Civil Engineering Journal, 2002,35(1):44-49. (in Chinese)  
[20] Larsen A, Gimsing N J.Wind engineering aspects of the east bridge tender project[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 42 (1):1405-1416.
[21]鞠小华.三跨连续加劲梁悬索桥基频近似公式[J].铁道工程学报, 2003,78(2):59-63.
JU Xiao-hua. Approximate formulas of calculating primary frequencies for three-span continuous girder suspension bridge [J].Journal of Rail Way Engineering Society, 2003,78(2):59-63. (in Chinese) 
[22]焦常科,李爱群,王浩.3塔悬索桥动力特征参数分析[J].公路交通科技, 2010,27(4):51-55.
JIAO Changke, LI Aiqun, WANG Hao. Analysis on parameters of dynamic property of triple-pylon suspension bridge [J]. Journal of Highway and Transportation Research and Development, 2010,27 (4):51-55. (in Chinese) 
[23]王本劲,马如进,陈艾荣.多塔连跨悬索桥基频估算实用公式[J].公路交通科技, 2012,29(11):58-62.
WANG Benjin, MA Rujin, CHEN Airong. Practical formula of fundamental frequency estimation for multi-pylon suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2012,29 (11):58-62. (in Chinese)
[24]杨国俊,杜永峰,郝宪武,等.边跨非对称的三跨悬索桥振动基频估算方法[J].振动与冲击,2018,37(10):194-201.
YANG Guo-jun,DU Yong-feng,HAO Xian-wu,et al. Estimation method for the fundamental frequency of a three-span suspension bridge with asymmetric side-span [J].Journal of Vibration and Shock,2018,37(10): 194-201. (in Chinese)
[25]周勇军,张晓栋,宋一凡,等.高墩连续刚构桥纵向振动基频的能量法计算公式[J].长安大学学报(自然科学版), 2013,33(3):48-54.
ZHOU Yongjun, ZHANG Xiaodong, SONG Yifan, et al.Calculation formula of longitude fundamental vibration frequency for continuous rigid frame bridge with higher pier based on energy method[J].Journal of Chang’an University : Natural Science Edition ,2013,33 (3):100-106. (in Chinese) 
[26]陈一飞,孙宗光,邵元.预应力对混凝土简支梁自振频率的影响分析[J].结构工程师,2016,32 (6):34-38.
CHEN Yi-fei,SUN Zongguang,SHAO Yuan. Effect of prestress on natural frequency of a PC simple supported beam[J].Structural Engineers,2016,32(6):34-38.(in Chinese) 
[27]陈天亮.独塔自锚试悬索桥动力特性分析与减震控制研究[D].哈尔滨:哈尔滨工业大学,2013.
CHEN Tian-liang.Dynamic feature analysis and sesmic response control of single pylon self-anchored suspension bridge[D].Harbin:Harbin Institute of Technology,2013. (in Chinese)  
[28]WANG Hao,ZHOU Rui,ZONG Zhou-hong,et al. Study on seismic response control of a single-tower self-anchored suspension bridge with elastic-plastic steel damper[J]. Science China Technological Sciences, 2012,55(6):1496-1502.

PDF(1312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/