错列斜拉索尾流驰振及其抑振措施研究

蔡畅1,2,何旭辉1,2,敬海泉1,2,秦成文3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 37-43.

PDF(1844 KB)
PDF(1844 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 37-43.
论文

错列斜拉索尾流驰振及其抑振措施研究

  • 蔡畅1,2,何旭辉1,2,敬海泉1,2,秦成文3
作者信息 +

Wake galloping of staggered cables and its suppression measures

  • CAI Chang1,2,HE Xuhui1,2,JING Haiquan1,2,QIN Chengwen3
Author information +
文章历史 +

摘要

以实际工程中的斜拉桥错列斜拉索为工程背景,设计了一套斜拉索风洞试验装置,对非平行的双排斜拉索进行了气弹模型风洞试验,研究了风攻角和风偏角对拉索振动的影响。试验观察到下游拉索发生明显的尾流驰振,尾流驰振的振幅及轨迹受风攻角与风偏角的影响显著。当风攻角为5°、风偏角为10°时下游拉索最容易发生大幅尾流驰振,因此将此组合工况定为最不利工况。针对此最不利工况施加了三种抑振措施,分别为刚性杆连接、弹性杆连接和增加阻尼,试验结果表明加刚性连接杆或弹性连接杆成功抑制尾流驰振,而当阻尼比小于0.68%时,增加阻尼对尾流驰振的抑振效果不明显。

Abstract

The background of this study is a real cable-stayed bridge.A special support system was designed for wind tunnel tests.The effects of incidence angle and yaw angle on the wake induced vibration of two flexible staggered and unparalleled stay cables were investigated.Large wake galloping has been observed.The incidence angle and yaw angle of cables have significant impact on the amplitude and trajectory of the wake galloping.When the incidence angle equals 5° and the yaw angle equals 10°, the downstream cable is more prone to wake galloping.Therefore, this configuration is considered to be the most unfavorable case.Three suppression measures were applied to this unfavorable case.They are rigid connection rod, flexible connection rod, and additional damping.The results show that the rigid connection rod and the flexible connection rod successfully suppress the wake galloping of the downstream cable, while the effect of a little increase in additional damping is not apparent.

关键词

错列斜拉索 / 风洞试验 / 尾流驰振 / 抑振措施

Key words

staggered cables / wind tunnel test / wake galloping / vibration suppressing measures

引用本文

导出引用
蔡畅1,2,何旭辉1,2,敬海泉1,2,秦成文3. 错列斜拉索尾流驰振及其抑振措施研究[J]. 振动与冲击, 2020, 39(6): 37-43
CAI Chang1,2,HE Xuhui1,2,JING Haiquan1,2,QIN Chengwen3. Wake galloping of staggered cables and its suppression measures[J]. Journal of Vibration and Shock, 2020, 39(6): 37-43

参考文献

[1]  Jing H Q, Xia Y, Li H, et al. Excitation mechanism of rain–wind induced cable vibration in a wind tunnel[J]. Journal of Fluids & Structures, 2017, 68:32-47.
[2]  Jing H Q, Xia Y, Li H, et al. Study on the role of rivulet in rain–wind-induced cable vibration through wind tunnel testing[J]. Journal of Fluids & Structures, 2015, 59(10):316-327.
[3]  He X H, Wu T, Zou Y F, et al. Recent developments of high-speed railway bridges in China[J]. Structure & Infrastructure Engineering, 2017, 13(12), 1584-1595.
[4] Hata K, Kusuhara S, Hanai T. A Study on Countermeasures for Wake Galloping in Parallel Cables of Cable-Stayed Bridges[C]// PROCEEDINGS OF NATIONAL SYMPOSIUM ON WIND ENGINEERING. Japan Association for Wind Engineering, 2005:000009-000009.
[5]  Laursen E, Bitsch N, Andersen J E. Analysis and Mitigation of Large Amplitude Cable Vibrations at the Great Belt East Bridge[C]// IABSE Symposium Report. 2006.
[6]  Zdravkovich M M. The effects of interference between circular cylinders in cross flow †[J]. Journal of Fluids & Structures, 1987, 1(2):239-261.
[7]  Bokaian A, Geoola F. Wake-induced galloping of two interfering circular cylinders[J]. Journal of Fluid Mechanics, 1984, 146(146):383-415.
[8]  Assi G R S, Bearman P W, Meneghini J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661(4):365-401.
[9]  吴其林, 华旭刚, 胡腾飞. 基于能量方法的拉索尾流驰振风洞试验研究[J]. 振动与冲击, 2017, 36(4):218-225.
WU Qilin, HUA Xugang, HU Tengfei. Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method[J]. Journal of Vibration and Shock, 2017, 36(4):218-225.
[10] 陈政清, 刘慕广, 刘志文. 基于气弹模型的串列主缆气动干扰试验研究[J]. 振动与冲击, 2008,27(8):7-11.
CHEN Zhengqing, LIU Muguang, LIU Zhiwen. Experiment study on aerodynamic interference of tandem cables based on aeroelastic model [J]. Journal of Vibration and Shock, 2008, 27(8): 7-11.
[11] 李永乐,王涛,廖海黎. 斜拉桥并列拉索尾流驰振风洞试验研究[J]. 工程力学, 2010, 27(增刊1):216-221.
LI Yongle, WANG Tao, LIAO Haili. Investigation on wake galloping of parallel cables in cable-stayed bridge by wind tunnel test[J]. Engineering Mechanics, 2010, 27(Sup1):216-221.
[12] 胡建华, 赵跃宇, 刘慕广,等. 串列双索气弹模型的风洞试验研究[J]. 动力学与控制学报, 2006, 4(2):179-186.
HU Jianhua, ZHAO Yueyu, LIU Muguang. Wind Tunnel Studies on the behavior of aeroelastic twin cable model[J]. Journal of Dynamics & Control, 2006, 4(2):179-186.
[13] 马如进, 倪美娟. 中间索面斜拉桥并列拉索尾流驰振数值研究[J]. 振动与冲击, 2013, 32(10):91-94.
MA Rujin, NI Meijuan. Numerical simulation on wake galloping of parallel cables of cable stayed bridge with central cable planes [J]. Journal of Vibration and Shock, 2013, 32(10):91-94.
[14] 严波,蔡萌琦,吕欣,等. 四分裂导线尾流驰振数值模拟研究[J]. 振动与冲击, 2015,34(1):182-189.
YAN Bo, CAI Mengqi, LU Xin, et al. Numerical simulation on wake galloping of quad bundle conductor[J]. Journal of Vibration & Shock, 2015, 34(1):182-189.
[15] Katsuchi H, Yamada H. Wind-tunnel study on mechanism and suppression of wake-induced vibration of parallel cables[C]// NCTAM papers, National Congress of Theoretical and Applied Mechanics, Japan. National Committee for IUTAM, 2008:114-114.
[16] Yoshimura T, Savage M G, Tanaka H, et al. A device for suppressing wake galloping of stay-cables for cable-stayed bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 49(1–3):497-505.
[17] Yoshimura T, Savage M G, Tanaka H, et al. Wind-induced oscillations of groups of bridge stay-cables[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1995, s 54–55(94):251-262.
[18] Maeda H, Kubo Y, Kato K, et al. Aerodynamic characteristics of closely and rigidly connected cables for cable-stayed bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 69(69):263-278.
[19] Li Y L, Wu M X, Chen X Z, et al. Wind tunnel study on wake galloping of parallel cables in cable-stayed bridges and its suppression measures[J]. Wind & Structures An International Journal, 2013, 16(3):249-261.
[20] Zhou H, Qi S, Yao G, et al. Damping and frequency of a model cable attached with a pre‐tensioned shape memory alloy wire: Experiment and analysis[J]. Structural Control & Health Monitoring, 2018, 25(2):e2106.
[21] Zhou H, Yang X, Sun L, et al. Free vibrations of a two‐cable network with near‐support dampers and a cross‐link[J]. Structural Control & Health Monitoring, 2015, 22(9):1173-1192.

PDF(1844 KB)

479

Accesses

0

Citation

Detail

段落导航
相关文章

/