压电式二维微定位平台的率相关迟滞建模

胡俊峰,何建康,杨明立

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 104-110.

PDF(1624 KB)
PDF(1624 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 104-110.
论文

压电式二维微定位平台的率相关迟滞建模

  • 胡俊峰,何建康,杨明立
作者信息 +

Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage

  • HU Junfeng,HE Jiankang,YANG Mingli
Author information +
文章历史 +

摘要

为了描述压电式多维微定位平台的率相关迟滞非线性特性,提出了一种基于Hammerstein模型的建模方法。以一种二维微定位平台为对象,平台动态模型是由静态迟滞非线性部分和一个线性动态系统部分串联组成。静态非线性部分由改进的Prandtl-Ishlinskii模型描述,线性动态系统部分由外因输入自回归模型(ARX)模型描述,并给出了模型参数辨识方法。为了验证所建立的Hammerstein模型有效性,搭建了实验平台进行实验验证。实验结果表明,对平台施加不同频率电压信号,由Hammerstein模型得到的预测位移和实测位移相对误差范围为 1 %~5 %,预测位移与实测位移接近,说明所建立的模型能精确描述微定位平台的率相关迟滞特性。

Abstract

In order to describe the rate-dependent hysteresis nonlinearity of piezoelectric multi-dimensional micro-positioning stages, a modeling method was proposed based on the Hammerstein model.The dynamic model of a two-dimensional micro-positioning stage was composed of a static hysteretic nonlinear part and a linear dynamic system in series.The static nonlinear part was described by an modified Prandtl-Ishlinskii model (MPI), and the linear dynamic system was described by the autoregressive model with exogenous input (ARX).The model parameter identification method was also given out.In order to verify the validity of the Hammerstein model, an experimental platform was set up for experimental verification.The experimental results show that the relative errors between the predicted displacements derived by the Hammerstein model and measured displacements is 1 %—5 % by applying different frequency voltage signals to the stage.The predicted displacements are close to the measured displacements, which shows that the presented model can accurately describe the rate-dependent hysteresis characteristics of the micro-positioning stage.

关键词

压电陶瓷驱动器 / Hammerstein模型 / 微定位平台 / 率相关迟滞特性

Key words

piezoelectric actuator / hammerstein model / micro-positioning stage / rate-dependent hysteresis

引用本文

导出引用
胡俊峰,何建康,杨明立. 压电式二维微定位平台的率相关迟滞建模[J]. 振动与冲击, 2020, 39(6): 104-110
HU Junfeng,HE Jiankang,YANG Mingli. Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage[J]. Journal of Vibration and Shock, 2020, 39(6): 104-110

参考文献

[1] Yue Yi, Gao Feng, Zhao Xianchao, et al. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator [J]. Mechanism and Machine Theory, 2010, 45(5): 756-771.
[2] Xiao Shunli, Li Yangmin. Modeling and high dynamic compensating the Rate-dependent hysteresis of Piezoelectric actuators via a novel modified inverse Preisach model [J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1549-1557.
[3] 胡俊峰, 杨展宏, 徐贵阳. 基于响应面法的微操作平台可靠性稳健设计 [J]. 振动与冲击, 2017, 36(15): 245-252.
HU Jun-feng, YANG Zhan-hong, XU Guiyang. Reliability-based robust design of a micro-manipulation Stage with response surface method [J]. Journal of Vibration and Shock, 2017, 36(15): 245-252.
[4] 胡俊峰, 杨展宏. 尺蠖式直线微驱动器的设计 [J]. 光学 精密工程, 2017, 26(1): 122-131.
HU Jun-feng, YANG Zhan-hong. A novel inchworm linear micro actuator [J]. Optics and Precision Engineering, 2017, 26(1): 122-131.
[5] Zakerzadeh M R, Firouzi M, Sayyaadi H, et al. Hysteresis nonlinearity identification using new Preisach model based artificial neural network approach [J]. Journal of Applied Mathematics, 2011, 2011(22): 1-21.
[6] Habineza D , Rakotondrabe M , Gorrec Y L . Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner [J]. IEEE Transactions on Control Systems Technology, 2015, 23(5): 1797-1806.
[7] Jiaqiang, E, Qian, Cheng, Zhu, Hao, et al. Parameter-identification investigations on the hysteretic Preisach model improved by the fuzzy least square support vector machine based on adaptive variable chaos immune algorithm [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36(3): 227-242.
[8] Lin C J, Lin P T. Tracking Control of a Biaxial Piezo-actuated Positioning Stage Using Generalized Duhem Model [J]. Computers & Mathematics with Applications, 2012, 64(5): 766-787.
[9] 崔玉国, 朱耀祥, 马剑强 等. 压电微动平台的定位控制[J]. 振动与冲击, 2015, 34(17): 63-68.
CUI Yu-guo, ZHU Yao-xiang, MA Jian-qiang, et al. Position Control for a Piezoelectric Micro-Positioning Stage [J]. Journal of Vibration and Shock, 2015, 34(17): 63-68.
[10] 武毅男,方勇纯. 基于Preisach模型的深度学习网络迟滞建模 [J]. 控制理论与应用, 2018, 35(6): 723-731.
WU Yi-nan, FANG Yong-chun. Hysteresis Modeling with Deep Leraning Network Based on Preisach Model[J]. Control Theory and Applications, 2018, 35(6):723-731.
[11] 贾立, 李训龙. Hammerstein模型辨识的回顾及展望 [J]. 控制理论与应用, 2014, 31(1): 1-10.
Jia Li, Li Xunlong. Identification of Hammerstein model: review and prospect [J]. Control Theory and Applications, 2014, 31(1): 1-10.
[12] Wang Zhenyua, Zhang Zhen, Mao Jianqin, et al. A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator [J]. 2012, 23(1): 1391-1396.
[13] 杨斌堂, 赵寅, 彭志科 等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制 [J]. 光学 精密工程, 2013, 21(1): 124-130.
YANG Bintang, ZHAO Yin, PENG Zhike, et al. Real-time compensation control of Hysteresis based on Prandtl-Ishlinskii operator for GMA [J]. Optics and Precision Engineering, 2013, 21(1): 124-130.
[14] Kuhnen K. Modeling, Identification and compensation of complex Hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach [J]. European Journal of Control, 2003, 9(4): 407-418.
[15] 杨一博, 尹文生, 汪劲松 等. 粗精动运动平台的系统辨识激励信号优化设计 [J]. 机械工程学报, 2010, 46(9): 165-170.
Yang Yibo, Yin Wenshen,Wang Jinson,et al. Optimal Excitation Signal Design for Identification of a Coarse-fine Motion PlatfoFm [J]. Chinese Journal of Mechanical Engineering, 2010, 46(9): 165-170.

PDF(1624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/