一种锥形定位节面变幅杆结构优化设计研究

周辉林1,张建富1,冯平法1,2,郁鼎文1,吴志军1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 111-124.

PDF(1403 KB)
PDF(1403 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 111-124.
论文

一种锥形定位节面变幅杆结构优化设计研究

  • 周辉林1,张建富1,冯平法1,2,郁鼎文1,吴志军1
作者信息 +

Structural optimization design of a horn with a tapered locating nodal surface

  • ZHOU Huilin1,ZHANG Jianfu1,FENG Pingfa1,2,YU Dingwen1,WU Zhijun1
Author information +
文章历史 +

摘要

为提高变幅杆的振动传递及振幅输出特性,基于解析法设计了具有锥形定位节面结构的旋转超声加工变幅杆,通过预应力模态分析与谐响应分析进行了优化设计;通过响应面优化方法建立27个优化设计点,分别以放大系数最大化、最大等效应力最小化与谐振频率最接近理论设计频率为第一、第二与第三优化目标,并提出一种5阶模态频响曲面验证方法,通过(2~6)阶5个模态频响曲面分析结果对优化设计点的最优优化解进行验证。研究表明,基于该研究提出的方法,结构优化设计后的变幅杆能够提高放大系数,降低最大等效应力,并使谐振频率接近理论设计频率,提高超声加工的能量利用率。对旋转超声加工装备的性能研究与开发具有一定的指导意义。

Abstract

In order to improve its vibration transmission and amplitude output characteristics, a horn for rotary ultrasonic machining with a tapered locating nodal surface was designed based on the analytical method, and optimized by the prestress modal analysis and harmonic response analysis.27 optimization design points were established making use of the response surface optimization method.The first, second and third optimization objectives are maximizing the amplification factor, minimizing the maximum equivalent stress and closing the resonant frequency to the theoretical design frequency, respectively.A 5-order modal frequency response surface validation method was proposed, and the optimal solution of the optimal design points was verified by the results of (2—6) order 5-mode frequency response surface analysis.The results show that, based on the proposed method, the optimized horn can improve the amplification coefficient, reduce the maximum equivalent stress, make the resonant frequency close to the theoretical design frequency, and improve the energy efficiency of ultrasonic machining.It has a certain guiding significance for the research and development of the performance of rotary ultrasonic machining equipments.

关键词

旋转超声加工 / 锥形定位节面 / 响应面优化方法 / 有限元仿真分析 / 最优优化解

Key words

rotary ultrasonic machining / tapered locating nodal surface / response surface optimization method / finite element simulation analysis / optimal optimization solution

引用本文

导出引用
周辉林1,张建富1,冯平法1,2,郁鼎文1,吴志军1. 一种锥形定位节面变幅杆结构优化设计研究[J]. 振动与冲击, 2020, 39(6): 111-124
ZHOU Huilin1,ZHANG Jianfu1,FENG Pingfa1,2,YU Dingwen1,WU Zhijun1. Structural optimization design of a horn with a tapered locating nodal surface[J]. Journal of Vibration and Shock, 2020, 39(6): 111-124

参考文献

[1] Wang Y, Lin B, Wang S, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing [J]. International Journal of Machine Tools & Manufacture, 2014, 77(1): 66-73 .
[2] Zhang SJ, To S, Wang SJ, et al. A review of surface roughness generation in ultra-precision machining [J]. International Journal of Machine Tools & Manufacture, 2015, 91:76-95.
[3] Astashev VK, Babitsky V I. Ultrasonic Processes and Machines. Dynamics, Control and Applications [M] // Ultrasonic Processes and Machines. Springer Berlin Heidelberg, 2007.
[4] 潘巧生, 刘永斌, 贺良国,等. 一种大振幅超声变幅杆设计[J]. 振动与冲击, 2014, 33(9):1-5.
Pan Qiaosheng, Liu Yongbin, He Liangguo, et al. Design of a large amplitude ultrasonic horn[J]. Journal of Vibration and Shock, 2014, 33(9): 1-5.
[5] 谢欣平, 田阿利, 王自力,等. 考虑负载影响的阶梯形超声变幅杆动力特性[J]. 振动与冲击, 2012, 31(4):157-161.
Xie Xinping, Tian Ali, Wang Zili, et al. Dynamic characteristics of stepped ultrasonic horns considering load effects[J]. Journal of Vibration and Shock, 2012, 31(4): 157-161.
[6] 王维鸽, 贺西平. 超声纵振动空心变幅杆的特性[J]. 陕西师范大学学报(自科版), 2015, 43(4):43-47.
Wang Weige, He Xiping. Characteristics of Ultrasonic Longitudinal Vibration Hollow Horns[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2015, 43(4): 43-47.
[7] 纪华伟, 虞文泽, 胡小平. 力负载对超声切割声学系统谐振频率及谐振阻抗的影响[J]. 振动与冲击, 2016, 35(23): 136-141.
Ji Huawei, Yan Wenze, Hu Xiaoping. Effects of Force Load on Resonant Frequency and Resonant Impedance of Acoustic Cutting Acoustic System[J]. Journal of Vibration and Shock, 2016, 35(23): 136-141.
[8] 张勤俭, 曹建国, 赵路明. 基于有限元方法的阶梯形超声变幅杆设计及优化[J]. 应用基础与工程科学学报, 2015 (S1): 134-140.
Zhang Qinyu, Cao Jianguo, Zhao Luming. Design and Optimization of Stepped Ultrasonic Horns Based on Finite Element Method[J]. Journal of Basic Science and Engineering, 2015(s1): 134-140.
[9] 申昊, 蔡万宠, 郁鼎文,等. 两级阶梯形变幅杆设计及优化[J]. 振动与冲击, 2015, 34(20):104-108.
Shen Hao, Cai Wanchong, Yu Dingwen, et al. Design and optimization of two-stage stepped horns[J]. Journal of Vibration and Shock, 2015, 34(20): 104-108.
[10] 王敏慧, 鲍善惠. 粗细端等长阶梯形变幅杆的有限元分析[J]. 应用声学, 2005, 24(5): 275-280.
Wang Minhui, Bao Shanhui. Finite Element Analysis of Stepped Deflection Rod with Equal Length and Thick End[J]. Chinese Journal of Applied Optics, 2005, 24(5): 275-280.
[11] 戴向国, 谷诤巍, 傅水根, 等. 变幅杆连接结构对超声能量传递效果的影响[J]. 清华大学学报: 自然科学版, 2004, 44(2): 160-162.
Dai Xiangguo, Gu Wei, Fu Shuigen, et al. Influence of horn connecting structure on ultrasonic energy transfer[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(2): 160-162.
[12] 林仲茂. 超声变幅杆的原理和设计[M]. 科学出版社, 1987.
Lin Zhongmao. Principle and design of ultrasonic horn [M]. Science Press, 1987.

PDF(1403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/