骨料粒径对混凝土动态拉伸强度及尺寸效应影响分析

金浏,杨旺贤,余文轩,杜修力

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 24-34.

PDF(3988 KB)
PDF(3988 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 24-34.
论文

骨料粒径对混凝土动态拉伸强度及尺寸效应影响分析

  • 金浏,杨旺贤,余文轩,杜修力
作者信息 +

Influence of aggrecate size on the dynamic tensile strength and size effect of concrete

  • JIN Liu,YANG Wangxian,YU Wenxuan,DU Xiuli
Author information +
文章历史 +

摘要

骨料粒径是影响混凝土力学性能及破坏机理的重要因素。从细观角度出发,将混凝土看作由骨料颗粒、砂浆基质及界面过渡区组成的三相复合材料,考虑细观组分的应变率效应,建立了混凝土动态拉伸破坏行为研究的细观力学分析模型,模拟研究了不同骨料粒径下混凝土动态拉伸破坏行为,并揭示了动态拉伸强度的尺寸效应规律。研究表明:低应变率下骨料不发生破坏,骨料粒径对混凝土动态拉伸破坏模式及拉伸强度影响显著,且拉伸强度的尺寸效应随骨料粒径的减小而削弱;高应变率下裂缝将贯穿骨料,骨料粒径的大小对混凝土动态拉伸强度及尺寸效应影响可忽略。最后,结合应变率效应的影响机制,建立了混凝土拉伸强度的“静动态统一”尺寸效应理论公式,该公式可以较好描述各骨料粒径下混凝土动态拉伸强度与试件尺寸的定量关系。

Abstract

Aggregate size is an important factor affecting the mechanical properties and fracture mechanism of concrete.From the microscopic point of view, concrete was considered as a three-phase composite material composed of aggregate particles, mortar matrix and interfacial transition zone.Considering the strain rate effect of meso-components, a meso-mechanical analysis model for the study of dynamic tensile failure behaviors of concrete was established.The dynamic tensile failure behavior of concrete with different aggregate size was simulated and the size effect on the dynamic tensile strength was revealed.The results are as follows: at low strain rate, aggregate does not be destroyed, and aggregate size has a significant effect on the dynamic tensile failure mode and tensile strength of concrete.The size effect on the tensile strength weakens with the decrease of aggregate size.Cracks will penetrate aggregate at high strain rate, so that the effect of aggregate size on the dynamic tensile strength and size effect of concrete can be neglected.Finally, combining with the influence mechanism of strain rate effect, a theoretical formula for the “static and dynamic unified” size effect of concrete tensile strength was established, which can well describe the quantitative relationship between the concrete dynamic tensile strength and specimen size under different aggregate size.

关键词

混凝土 / 尺寸效应 / 骨料粒径 / 动态拉伸 / 细观模拟

Key words

concrete / size effect / aggregate size / dynamic tensile / meso-scale simulation

引用本文

导出引用
金浏,杨旺贤,余文轩,杜修力. 骨料粒径对混凝土动态拉伸强度及尺寸效应影响分析[J]. 振动与冲击, 2020, 39(9): 24-34
JIN Liu,YANG Wangxian,YU Wenxuan,DU Xiuli. Influence of aggrecate size on the dynamic tensile strength and size effect of concrete[J]. Journal of Vibration and Shock, 2020, 39(9): 24-34

参考文献

[1] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ): 材料层次[J]. 土木工程学报, 2017 50(9): 28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I): concrete materials [J]. China Civil Engineering Journal, 2017 50(9): 28-45. [2] Wang XH, Zhang SR, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165: 45-57. [3] Bazant ZP, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. CRC Press, 1998. [4] Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153: 1-55. [5] Carpinteri A, Ferro G. Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure[J]. Materials and Structures, 1994, 27(10): 563-571. [6] 杜敏, 金浏, 李冬, 等. 粗骨料粒径对混凝土弯拉强度尺寸效应影响的试验研究[J]. 北京工业大学学报, 2016(06): 912-918. Du Min, Jin Liu, Li Dong, et al. Experimental Study of the Influence of Coarse Aggregate Size on the Size Effect of Concrete Flexural Strength[J]. Journal of Beijing University of technology, 2016(06): 912-918. [7] 吴历斌, 孙振平, 蒋正武, 等. 高强高性能混凝土中集料对力学性能的影响[J]. 混凝土, 2001(1):43-46. Wu Libin, Sun Zhenping, Jiang Zhengwu, et al. The Influence of Aggregte to Mechanical Performances on the High Strength and High Performance Concrete[J]. Concrete, 2001(1): 43-46. [8] 李树山, 高丹盈. 粗骨料粒径对卵石混凝土抗压强度影响的试验研究[J]. 混凝土, 2013(02):59-61. Li Shushan, Gao Danying. Experimental research on the influence of coarse aggregate size on boulder concrete compressive strength[J]. Concrete, 2013(02):59-61. [9] 王林. 骨料及水泥石强度对混凝土断裂性能的影响[D]. 北京: 清华大学, 2004. Wang Lin. Effect of Aggregate and Cement Matrex Strength on the Fracture Properties of Concrete[D]. Beijing: Tsinghua University, 2004. [10] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials & Structures, 1991, 24(6): 425-450. [11] Hao Y, Hao H, Li ZX. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60: 82-106. [12] Hao Y, Hao H, Li ZX. Numerical Analysis of Lateral Inertial Confinement Effects on Impact Test of Concrete Compressive Material Properties[J]. International Journal of Protective Structures, 2010, 1(1): 145-168. [13] Zhou XQ, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids & Structures, 2008, 45(17): 4648-4661. [14] Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J]. Cement & Concrete Research, 2011, 41(11): 1130-1142. [15] Pedersen RR, Simone A. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement & Concrete Research, 2013, 50(7): 74-87. [16] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4): 5-17. [17] Grassl P, Grégoire D, Solano L R, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13): 1818-1827. [18] Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. [19] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids & Structures, 1989, 25(3): 299-326. [20] Yan D, Lin G. Dynamic properties of concrete in direct tension[J]. Cement & Concrete Research, 2006, 36(7): 1371-1378. [21] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9): 869-886. [22] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and structures, 1991, 24(6): 425-450. [23] Ross C A, Tedesco J W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[J]. Materials Journal, 1989, 86(5): 475-481. [24] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of solids and structures, 2003, 40(2): 343-360. [25] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK: Redwood Books, 1993. [26] Malvar L J, Ross C A. A Review of Strain Rate Effects for Concrete in Tension[J]. ACI Materials Journal, 1998, 95(6): 735-739. [27] Lubliner J, Ollivier J, Oller S, et al.A Plastic-damage Model for Concrete[J].International Journal of Solids and Structures, 1989, 25 (3): 299-326. [28] Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International Journal of Solids & Structures, 1996, 33(23): 3363-3375. [29] 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2016, 31(3): 261-270. Gao Faguang. Effect of strain-rate hardening on dynamic

PDF(3988 KB)

Accesses

Citation

Detail

段落导航
相关文章

/