风浪不共线对浮式风机基础动态特性影响研究

李修赫,朱才朝,谭建军,樊志鑫,倪高翔

振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 230-237.

PDF(3020 KB)
PDF(3020 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 230-237.
论文

风浪不共线对浮式风机基础动态特性影响研究

  • 李修赫,朱才朝,谭建军,樊志鑫,倪高翔
作者信息 +

Effects of wind-wave misalignment on dynamic characteristics of floating offshore wind turbine foundation

  • LI Xiuhe,ZHU Caichao,  TAN Jianjun,FAN Zhixin,NI Gaoxiang
Author information +
文章历史 +

摘要

旨在研究风载方向和波浪方向不共线对浮式风机基础动态特性影响。以5 MW浮式风机为研究对象,采用等效载荷法模拟空气动力载荷,建立浮式风机系统耦合动力学模型,研究风浪呈0°、30°、60°和90°夹角工况时,浮式风机基础动态特性变化。结果表明:风浪不共线对浮式平台纵荡和横荡运动平衡位置影响很大,对垂荡运动响应影响很小。随着风浪夹角增大,横摇和艏摇运动振荡范围增大,纵摇运动振荡范围减小。风浪不共线使得系泊系统张力响应变化明显,张力变化趋势与平台运动及系泊布置有关。

Abstract

Here, effects of wind-wave misalignment on dynamic characteristics of a floating offshore wind turbine foundation were investigated. A 5 MW floating offshore wind turbine was taken as the studying object, its aerodynamic loads were simulated with the equivalent load method, and its coupled dynamic model was established. Under working conditions of wind-wave angles of 0°, 30°, 60° and 90°, changes of dynamic characteristics of the turbine foundation were studied. Results showed that effects of wind-wave misalignment on the floating platform’s surge and sway equilibrium positions are very large, while wind-wave misalignment has little effects on the floating platform’s heave response; with increase in wind-wave angle, the platform’s  roll and yaw oscillation ranges increase, while its pitch oscillation range decreases; wind-wave misalignment makes the mooring system’s tension response vary obviously, the tension variation trend is related to platform motions and mooring arrangement.

关键词

风浪不共线 / 浮式风机基础 / 系泊系统 / 动力学模型 / 动态特性

Key words

wind-wave misalignment / floating offshore wind turbine foundation / mooring system / dynamic model / dynamic characteristics

引用本文

导出引用
李修赫,朱才朝,谭建军,樊志鑫,倪高翔. 风浪不共线对浮式风机基础动态特性影响研究[J]. 振动与冲击, 2020, 39(13): 230-237
LI Xiuhe,ZHU Caichao, TAN Jianjun,FAN Zhixin,NI Gaoxiang. Effects of wind-wave misalignment on dynamic characteristics of floating offshore wind turbine foundation[J]. Journal of Vibration and Shock, 2020, 39(13): 230-237

参考文献

[1]  Yuanchuan L , Qing X , Atilla I , et al. Aeroelastic analysis of a floating offshore wind turbine in platform-induced surge motion using a fully coupled CFD-MBD method[J]. Wind Energy, 2018.

[2]  Fan Z, Zhu C. The Optimization and the application for the wind turbine power-wind speed curve. Renewable Energy, 2019, 140C:52-61.

[3]  Barth, S., and Eecen, P. J., 2006, “Description of the Relation of Wind, Waveand Current Characteristics at the Offshore Wind Farm Egmond Aan Zee(OWEZ) Location in 2006,” Technical Report No. ECN-E-07-104, ECN..

[4]  Kuhn, M., 2001, “Dynamics and Design Optimisation of Offshore Wind Energy Conversion Systems,” Ph.D. thesis, Delft University of Technology, Delft,The Netherlands.

[5]  Fischer, T., Rainey, P., Bossanyi, E., and K€uhn, M., 2011, “Study on Control Concepts Suitable for Mitigation of Loads From Misaligned Wind and Waves on OffshoreWind Turbines Supported on Monopiles,” Wind Eng., 35(5), pp. 561–574.

[6] DNV-OS-J103-2013, Design of Floating Wind Turbine Structures[S].

[7]  Yin L, Lo K H, Wang S S. Blade Pitch and Rotor Yaw, and Wind-wave Misalignment on Large Offshore Wind Turbine Dynamics in Western Gulf of Mexico Shallow Water in 100-year Return Hurricane[C]//International Conference on Ocean, Offshore & Arctic Engineering, Busan, Korea, June 19 - June. 2017.

[8]  Bachynski E E, Kvittem M I, Luan C, et al. Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects[J]. Journal of Offshore Mechanics & Arctic Engineering,2014,136(4):041902.

[9]  Yoshida S, Utsunomiya T. 1409 Effects of Wave-Wind Directional Misalignment on Dynamic Characteristics and Fatigue Loads of Spar-type Floating Offshore Downwind Turbine[C]//Fluids Engineering Conference. The Japan Society of Mechanical Engineers, 2010:407-408.

[10]  Barj L, Jonkman J M, Robertson A, et al. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine[C]//2014:2053-2063.

[11]  Stewart G M,  Lackner M A. The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads[J]. Engineering Structures,2014,73:54-61.

[12]  Robertson A, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, et al. Definition of the semisubmersible floating system for phase II of OC4. Golden, CO: National Renewable Energy Laboratory (NREL); 2014.

[13]  Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory Golden, CO; 2009.

[14]  Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM, Dagher HJ. Validation of a FAST semi-submersible floating offshore wind turbine numerical model with DeepCwind test data. J Renew Sustain Energy 2013;5(2). 023116.

[15]  Zheng Quan Li, Sheng Jun Chen, Hao Ma, et al. Design defect of wind turbine operating in typhoon activity zone[J]. Engineering Fatigue Analysis, 2013, 27(1): 165-172.

[16]  吴金城, 张容焱, 张秀芝. 海上风电机的抗台风设计[J]. 中国工程科学, 2010, 12(11):25-31.

WU Jincheng, Zhang Rongyan, ZHANG Xiuzhi. Anti-typhoon design for offshore wind turbines[J]. Engineering Sciences, 2010, 12(11):25-31.

[17]  API RP 2SK-2005(2015), Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Structures[S].

[18] 唐友刚, 张若瑜, 程楠, . 集中质量法计算深海系泊冲击张力[J]. 天津大学学报:自然科学与工程技术版,2009,42(8):695-701.

TANG You-gang, Zhang Ruo-yu, Cheng Nan, et al. The concentrated mass method to calculate the deep-sea mooring impact tension[J]. Journal of tianjin university: natural science and engineering technology edition,2009,42(8):695-701.

[19]  Coulling A J , Goupee A J , Robertson A N , et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of Renewable and Sustainable Energy, 2013, 5(2):023116.

[20]  Jonkman B, Jonkman J. FAST v8.16.00a-bjj User's guide. National Renewable Energy Laboratory(NREL); 2016.

[21]  郑崇伟, 周林. 10年南海波候特征分析及波浪能研究[J]. 太阳能学报, 2012, 33(8):1349-1356.

     ZHENG Chongwei, ZHOU Lin. WAVE CLIMATE AND WAVE ENERGY ANALYSIS OF THE SOUTH CHINA SEA IN RECENT 10 YEARS[J]. Acta Energiae Solaris Sinica, 2012, 33(8):1349-1356.

[22]  左其华, 杜齐鲁, 赵一晗等. 随机风谱研究及其在海岸工程应用述评[J]. 海洋工程, 2016, 34(2).

ZUO Qihua, DU Qilu, ZHAO Yihan, et al. Review of studies on random wind spectrum and its application in coastal engineering[J]. The Ocean Engineering, 2016, 34(2).


PDF(3020 KB)

Accesses

Citation

Detail

段落导航
相关文章

/