
基于解析小波变换识别结构的模态阻尼参数
Identifying the modal damping parameters of structures based on analytic wavelet transformation
摘要: 在结构振动分析中,结构的模态参数尤其模态阻尼参数的准确识别是一项十分重要的任务。基于Gabor小波函数的解析小波变换(AWT)通过小波函数与复值信号的匹配机制揭示信号的幅频和相频信息以实现结构模态阻尼参数的识别。本文基于小波变换(WT)理论,讨论了Gabor小波函数的特性及解析小波变换的时频分辨率和端点效应问题;为实现结构模态阻尼参数的准确识别,我们提出了Gabor小波函数参数选取和有效信号长度确定的依据。最后,一个频率呈密集分布的三自由度(3DOF)结构的数值模拟数据验证了本文提出的模态阻尼识别方法的有效性。
Abstract:The accurate identification of modal parameters is very important in the analysis of structural vibration especially modal damping of structures. By resorting to matching mechanism between the wavelet function and complex-valued signal, both the amplitude and phase frequency information can be revealed by the analytic wavelet transformation (AWT) based on the Gabor wavelet function to achieve the modal damping parameters identification of structures. In accordance with the wavelet transform (WT) theory, the characters of Gabor wavelet function, the time-frequency resolutions, and end effects of the AWT are discussed. In order to effectively carry out the modal damping parameter identification of structures, The method selecting the parameters of Gabor wavelet function and the formula determining the usable lengths of signal are thus proposed. Eventually, the efficiency of the present method is numerically corroborated by using the simulation data of a three degree-of- freedom (3DOF) structure with the closely natural frequencies.
多自由度结构 / 解析小波变换(AWT) / 结构阻尼参数识别 / Gabor小波 / 频率密集分布 {{custom_keyword}} /
Multiple degrees of freedom (MDOF) / Analytic wavelet transformation (AWT) / Damping parameter identification of structures / Gabor wavelet / Closely natural frequencies {{custom_keyword}} /
/
〈 |
|
〉 |