蚁群支持向量机在内燃机故障诊断中的应用研究

吴震宇;袁惠群

振动与冲击 ›› 2009, Vol. 28 ›› Issue (3) : 83-86.

PDF(1326 KB)
PDF(1326 KB)
振动与冲击 ›› 2009, Vol. 28 ›› Issue (3) : 83-86.
论文

蚁群支持向量机在内燃机故障诊断中的应用研究

  • 吴震宇,袁惠群
作者信息 +

RESEARCH ON FAULT DIAGNOSIS OF ENGINE BY ANT COLONY SUPPORT VECTOR MACHINE

  • WU Zhen-yu, YUAN Hui-qun
Author information +
文章历史 +

摘要

针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的蚁群优化技术应用到支持向量机惩罚函数和核函数参数的优化,提出了蚁群优化支持向量机方法。根据内燃机气门振动信号实测数据,建立了基于蚁群优化支持向量机的内燃机气门间隙故障诊断模型,并与基于遗传支持向量机和反向传播神经网络算法的模型比较。结果表明:应用蚁群优化支持向量机建立的内燃机气门间隙故障诊断模型无论从学习效率还是故障识别准确性上都优于应用另外两种算法建立的模型,能够有效地进行内燃机的故障诊断。

Abstract

For the blindness of man made choice of the parameter of support vector machine , a ant colony optimization was applied to select parameters of SVM ; and a novel algorithm, ant colony optimization support vector machine was put forward. According to the measured data of the vibration signal of the engine valve, the engine valve faults diagnosis model based on the ACO-SVM was established, and was compared with the models based on GA-SVM and BPNN. Results show that the engine valve faults diagnosis model based on the ACO-SVM outperforms the models based on other two algorithms in learning efficiency and diagnosis accuracy, and is available for the faults diagnosis of engine .

关键词

蚁群算法 / 支持向量机 / BP神经网络 / 故障诊断

Key words

ant colony optimization / support vector machine / BP neural networks / fault diagnosis

引用本文

导出引用
吴震宇;袁惠群. 蚁群支持向量机在内燃机故障诊断中的应用研究[J]. 振动与冲击, 2009, 28(3): 83-86
WU Zhen-yu;YUAN Hui-qun. RESEARCH ON FAULT DIAGNOSIS OF ENGINE BY ANT COLONY SUPPORT VECTOR MACHINE [J]. Journal of Vibration and Shock, 2009, 28(3): 83-86

PDF(1326 KB)

4131

Accesses

0

Citation

Detail

段落导航
相关文章

/