大气紊流作用下超音速二元机翼的脉动响应

郑国勇 杨翊仁

振动与冲击 ›› 2009, Vol. 28 ›› Issue (4) : 110-112.

PDF(762 KB)
PDF(762 KB)
振动与冲击 ›› 2009, Vol. 28 ›› Issue (4) : 110-112.
论文

大气紊流作用下超音速二元机翼的脉动响应

  • 郑国勇1 杨翊仁2
作者信息 +

Pulsation Response of Two Dimensional Wing to Atmosphere Turbulence in Supersonic Flow

  • ZHENG Guo-yong1, YANG Yi-ren2
Author information +
文章历史 +

摘要

以二元机翼为研究对象,研究大气紊流作用下系统的脉动响应。将气动力分解为简谐振动气动力和脉动气动力两部分,采用随机场的三角级数合成法得到作用在机翼上的脉动压力,运用随机理论对机翼均方根响应值进行分析,着重考查了平均来流速度、湍流尺度、湍流强度等对系统均方根响应的影响。结果表明,系统的均方根响应随速度的增大而增大,在流体速度小于线性临界颤振速度时,其变化很平缓,当速度超过临界颤振速度时,其均方根响应迅速增大。而均方根响应几乎随紊流强度的变化呈线性增长,但其对紊流尺度的变化不很敏感。

Abstract

The dynamic response of two-dimensional wing to atmosphere turbulence is investigated. The aerodynamic force is resolved into two parts, free vibrating aerodynamic force and fluctuating aerodynamic force. The fluctuating pressure can be obtained by using trigonometric series composition method of random field. The root of mean square of response of system is calculated with the random theory. It is the focal point to analyze the influences of the mean velocity, the strength of turbulence and the integral measure of turbulence on the root of mean square of structure response. The results show that the root of mean square of response slowly and linearly increases when the flow velocity is low the flutter critical speed. But, when the flow velocity is over the flutter critical speed, the root of mean square of response prominently and linearly increases with the increasing of the flow velocity. However, the root of mean square of response is insensitive to the change of the integral measure of turbulence.

关键词

大气紊流 / 极限环 / 颤振 / 活塞理论 / 随机响应

Key words

turbulence / limit cycle / flutter / piston theory / random response

引用本文

导出引用
郑国勇 杨翊仁. 大气紊流作用下超音速二元机翼的脉动响应[J]. 振动与冲击, 2009, 28(4): 110-112
ZHENG Guo-yong;YANG Yi-ren. Pulsation Response of Two Dimensional Wing to Atmosphere Turbulence in Supersonic Flow[J]. Journal of Vibration and Shock, 2009, 28(4): 110-112
中图分类号: V411    O322   

PDF(762 KB)

2016

Accesses

0

Citation

Detail

段落导航
相关文章

/