基于变分贝叶斯理论的机械故障源 盲分离方法研究

李志农;范 涛;刘立州;卢纪富

振动与冲击 ›› 2009, Vol. 28 ›› Issue (6) : 12-16.

PDF(1758 KB)
PDF(1758 KB)
振动与冲击 ›› 2009, Vol. 28 ›› Issue (6) : 12-16.
论文

基于变分贝叶斯理论的机械故障源 盲分离方法研究

  • 李志农1,范 涛1,刘立州1,卢纪富2
作者信息 +

Blind Separation of the Mechanical Fault Sources Based on Variational Bayesian theory

  • Li Zhinong1, Fan Tao1, Liu Lizhou1, Lu Jifu2
Author information +
文章历史 +

摘要

摘要:未知噪声环境下机械源信号盲分离方法由于忽略噪声影响往往得到很差的分离效果。针对此问题,本文提出了一种基于变分贝叶斯独立分量分析的机械故障源分离方法,该方法与传统的机械源分离方法相比,具有以下独特特点,即不需要将未知噪声看成一种独立源,也不需要进行消噪预处理,可直接对噪声干扰的机械源信号进行有效分离。仿真研究表明,提出的方法优于传统的机械源分离方法,分离误差大幅度降低。实验结果也验证了本文提出的方法的有效性。

Abstract

Abstract:The traditional blind separation method of mechanical sources generally can not give a satisfactory separation performance under the unknown noise. Based on this deficiency, a new separation method of machine fault sources based on variational Bayesian independent component analysis (VbICA) is proposed. Compared with the traditional method, the proposed method has such unique characteristics, i.e. the unknown noise can not be regarded as an independent source. The denoising preprocessing is also neglected. The mechanical sources under the noisy environment can be directly separated. The simulation result shows that the proposed method is superior to the traditional method, the separation error is greatly reduced. The experiment results also verified the validity of the proposed method .

关键词

盲源分离 / 故障诊断 / 变分贝叶斯 / 独立分量分析

Key words

Blind source separation (BSS) / Fault diagnosis / Variational Bayesian / Independent component analysis (ICA)

引用本文

导出引用
李志农;范 涛;刘立州;卢纪富. 基于变分贝叶斯理论的机械故障源 盲分离方法研究[J]. 振动与冲击, 2009, 28(6): 12-16
Li Zhinong;Fan Tao;Liu Lizhou;Lu Jifu. Blind Separation of the Mechanical Fault Sources Based on Variational Bayesian theory [J]. Journal of Vibration and Shock, 2009, 28(6): 12-16

PDF(1758 KB)

2539

Accesses

0

Citation

Detail

段落导航
相关文章

/