梯度功能梁中一维非线性波的孤波解

孙 丹 罗松南

振动与冲击 ›› 2009, Vol. 28 ›› Issue (9) : 188-191.

PDF(1505 KB)
PDF(1505 KB)
振动与冲击 ›› 2009, Vol. 28 ›› Issue (9) : 188-191.
论文

梯度功能梁中一维非线性波的孤波解

  • 孙 丹 罗松南
作者信息 +

THE SOLITARY WAVE SOLUTIONS OF A ONE-DIMENSIONAL NONLINEAR EQUATION OF WAVE PROPAGATION IN FUNCTIONALLY GRADED BEAMS

  • Sun Dan Luo Songnan
Author information +
文章历史 +

摘要

在考虑有限变形并引入横向Poisson效应的情况下,利用Hamilton变分原理,推导出了梯度功能梁的一维非线性波动方程。运用行波约化法将非线性波动方程化为常微分方程,然后利用位移形函数的系数待定法求出了非线性波动方程的位移孤波解。通过实例分析了材料参数沿厚度方向指数形式变化和抛物线形式变化时,材料参数和波传播时的波速对孤波的波幅和波宽的影响。

Abstract

Considering finite deformation and cross Poisson effects, a new nonlinear wave equation in a functionally graded beam was derived by means of Hamilton principle. By using travelling wave reduced form method, the nonlinear partial differential equation of wave propagation in a functionally graded beam was transformed ordinary differential equation. The solitary wave solutions of displacement are obtained by using method of undetermined coefficient of displacement functions and solving the nonlinear differential equation of wave propagation. Two cases of functionally graded materials, elastic modulus and mass density along the depth varying with exponentially and parabolic type, were analyzed by examples. The curves of displacement are presented and the influence of parameters of the functionally graded materials and velocity of wave propagation on amplitude and width of solitary wave are analyzed.

关键词

梯度功能梁 / 有限变形 / 非线性波 / 行波约化法 / 孤波解

Key words

functionally graded beams / finite deformation / nonlinear wave / travelling wave reduced form method / solitary wave solution

引用本文

导出引用
孙 丹 罗松南. 梯度功能梁中一维非线性波的孤波解[J]. 振动与冲击, 2009, 28(9): 188-191
Sun Dan Luo Songnan . THE SOLITARY WAVE SOLUTIONS OF A ONE-DIMENSIONAL NONLINEAR EQUATION OF WAVE PROPAGATION IN FUNCTIONALLY GRADED BEAMS [J]. Journal of Vibration and Shock, 2009, 28(9): 188-191

PDF(1505 KB)

2972

Accesses

0

Citation

Detail

段落导航
相关文章

/