基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术

赵元喜;胥永刚;高立新;崔玲丽

振动与冲击 ›› 2010, Vol. 29 ›› Issue (10) : 162-165.

PDF(1361 KB)
PDF(1361 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (10) : 162-165.
论文

基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术

  • 赵元喜; 胥永刚; 高立新; 崔玲丽
作者信息 +

The fault pattern recognition technique of roller bearing acoustic emission based on harmonic wavelet packet and BP neural network

  • Zhao Yuanxi; Xu Yonggang; Gao Lixin;Cui Lingli
Author information +
文章历史 +

摘要



由于滚动轴承声发射信号在各频段的能量分布与轴承的故障类型相关,可以利用谐波小波包将不同故障滚动轴承的声发射信号分解到不同频段,进而将各频段的能量组成特征向量输入BP神经网络,通过神经网络判别滚动轴承的故障类型。利用神经网络对滚动轴承进行故障识别时,对谐波小波包和Daubechies小波包进行了比较。实验结果证明对于滚动轴承声发射信号的故障模式识别,将谐波小波包分解和BP神经网络相结合的方法可以获得良好的效果。





Abstract

The energy content of each frequency sub-band of the acoustic emission(AE) signal after decomposition is related to the type of the roller bearing defect, AE signals measured from the bearing test rig were decomposed into a number of frequency sub-bands by using harmonic wavelet packet, and energy features associated with each sub-band were selected. The energy features were then used as inputs to a back-propagation neural network classifiers for identifing the bearing’s fault. In the bearing fault recognition, harmonic wavelet packet was compared with daubechies wavelet packet. The experimental results indicate that the proposed fault diagnosis method is effective and can be used for roller bearing fault recognition.

关键词

滚动轴承 / 声发射 / 谐波小波包 / 神经网络 / 故障模式识别

Key words

roller bearing / acoustic emission / harmonic wavelet packet / neural network / fault pattern recognition

引用本文

导出引用
赵元喜;胥永刚;高立新;崔玲丽. 基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J]. 振动与冲击, 2010, 29(10): 162-165
Zhao Yuanxi;Xu Yonggang;Gao Lixin;Cui Lingli. The fault pattern recognition technique of roller bearing acoustic emission based on harmonic wavelet packet and BP neural network[J]. Journal of Vibration and Shock, 2010, 29(10): 162-165

PDF(1361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/