基于分类器组的轴承故障识别方法研究

窦东阳;赵英凯

振动与冲击 ›› 2010, Vol. 29 ›› Issue (10) : 221-224,.

PDF(734 KB)
PDF(734 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (10) : 221-224,.
论文

基于分类器组的轴承故障识别方法研究

  • 窦东阳1; 赵英凯2

作者信息 +

Study on Fault Recognition Method of Rolling Bearings based on Classifier Ensembles

  • Dou Dongyang;Zhao Yingkai
Author information +
文章历史 +

摘要


提出一种基于设备运行数据构造分类器组用于滚动轴承故障识别的方法。在决策表上使用属性约简的遗传算法找出构成候选基分类器的较好约简,再使用多样性筛选的遗传算法找出最终的约简,以此为基础结合加权投票策略构建分类器组用于模式分类。通过轴承正常情况、内圈、外圈和滚动体故障的识别实验验证了方法的有效性,得到了较好的实验结果。

Abstract

A method to construct a data-based classifier ensemble used in fault diagnosis of rolling bearings was presented. The candidate reducts which could be used to build the base classifiers were found by applying a genetic algorithm for feature reduction on a decision table, and then the other genetic algorithm for diversity evaluation was used to search the ensemble of base classifiers. Based on the result above and the weighted voting strategy, the final solution for pattern classification could be set up. It is proved by the diagnosis experiment including normal condition, inner race faults, outer race faults and rolling elements faults that the method proposed in this paper is valid and the result obtained is exciting.

关键词

分类器组 / 约简 / 多样性 / 滚动轴承 / 故障识别

Key words

Classifier ensemble / Reduct / Diversity / Rolling bearing / Fault recognition

引用本文

导出引用
窦东阳;赵英凯. 基于分类器组的轴承故障识别方法研究[J]. 振动与冲击, 2010, 29(10): 221-224,
Dou Dongyang;Zhao Yingkai. Study on Fault Recognition Method of Rolling Bearings based on Classifier Ensembles[J]. Journal of Vibration and Shock, 2010, 29(10): 221-224,

PDF(734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/