基于样本熵快速算法的心音信号动力学分析

王新沛;杨静;李远洋;刘常春;李丽萍

振动与冲击 ›› 2010, Vol. 29 ›› Issue (11) : 115-118.

PDF(2370 KB)
PDF(2370 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (11) : 115-118.
论文

基于样本熵快速算法的心音信号动力学分析

  • 王新沛1; 杨静2; 李远洋1; 刘常春1; 李丽萍1
作者信息 +

Dynamics Analysis of Heart Sound Signal by Sample Entropy Fast Algorithm

  • WANG Xin-pei1; YANG Jing2; LI Yuan-yang1; LIU Chang-chun1; LI Li-ping1
Author information +
文章历史 +

摘要




为了准确刻画冠状动脉狭窄引起的血流动力学状态改变,提出了一种基于样本熵快速算法的舒张期心音分析方法。首先利用小波变换去除心音中的呼吸干扰,然后采用改进的香农能量算法自动分割出舒张期段,最后对分割出的舒张期心音用快速算法估计样本熵。对25例健康人和25例冠心病人的分析结果显示,冠心病人和健康人在舒张期心音的样本熵值上具有显著性差异。利用本文方法检测冠状动脉狭窄,敏感性为80%,特异性为84%。



Abstract

The diastolic heart sound analysis method based on sample entropy fast algorithm was proposed to exactly describe the change of hemodynamic character caused by coronary artery stenosis. Firstly, the heart sound signal was preprocessed by wavelet to eliminate the respiratory interference. Then, the diastolic segments were segmented automatically using segmentation algorithm based on 3-order Shannon entropy. Finally, the average sample entropy of diastolic heart sounds was estimated by sample entropy fast algorithm. The nonlinear dynamical analysis (sample entropy) measures of the diastolic heart sounds recorded from 25 normal subjects and 25 patients with coronary artery disease (CAD) were estimated. Results show that there are significant differences on the sample entropy values between subjects with and without CAD. This method led to a sensitivity of 80% and a specificity of 84%.

关键词

心音信号 / 样本熵 / 冠心病 / 非线性动力学分析

Key words

heart sound signal / sample entropy / coronary artery disease (CAD) / nonlinear dynamics analysis

引用本文

导出引用
王新沛;杨静;李远洋;刘常春;李丽萍. 基于样本熵快速算法的心音信号动力学分析[J]. 振动与冲击, 2010, 29(11): 115-118
WANG Xin-pei;YANG Jing;LI Yuan-yang;LIU Chang-chun;LI Li-ping. Dynamics Analysis of Heart Sound Signal by Sample Entropy Fast Algorithm[J]. Journal of Vibration and Shock, 2010, 29(11): 115-118

PDF(2370 KB)

Accesses

Citation

Detail

段落导航
相关文章

/