基于核主成分分析及支持向量机的水轮机叶片裂纹源定位

王向红&#;朱昌明;毛汉领;黄振峰

振动与冲击 ›› 2010, Vol. 29 ›› Issue (11) : 226-229.

PDF(1464 KB)
PDF(1464 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (11) : 226-229.
论文

基于核主成分分析及支持向量机的水轮机叶片裂纹源定位

  • 王向红1,朱昌明2,毛汉领3,黄振峰4
作者信息 +

Combination of Kernel Principal Component Analysis and Support Vector Machines for Source Location of Cracks in Turbine Blades

  • WANG Xiang-hong 1, Zhu Chang-ming 2, MAO Han-ling 3, HUANG Zhenfeng 4
Author information +
文章历史 +

摘要

本文结合核主成分分析(KPCA)以及支持向量机对水轮机转轮叶片裂纹源的声发射信号进行定位。结果表明,利用核主成分分析提取的特征参数进行定位的精度高于原始参数的定位精度,即输入9个特征参数时,支持向量机在叶片区域的识别率为100%,在裂纹源对焊缝距离的支持向量回归分析中的最大误差为20cm。因而结合KPCA和支持向量机对复杂的大尺寸结构进行定位是一种较好的方法,既减少了输入信号的维数,又提高了定位精度。

Abstract

Abstract This paper studies the application of kernel principal component analysis (KPCA) and support vector machines (SVM) for source location of the acoustic emission signals of cracks. The results show that the accuracy of location using the feature parameters using KPCA technique is improved compared with raw parameters. That is, the recognition rate of crack region is 100 percent and the maximum error of support vector regression for distance from source of cracks to welding seam is 20cm when the number of the input feature parameters is nine. As a result, it is a good method for source location of complex big-size structures to combine KPCA with SVM. It decreases the dimension of input signals and improves the accuracy of location as well.

关键词

支持向量机 / 核主成分分析 / 源定位 / 声发射

Key words

Support vector machines (SVM) / Kernel principal component analysis (KPCA) / source location / acoustic emission

引用本文

导出引用
王向红&#;朱昌明;毛汉领;黄振峰. 基于核主成分分析及支持向量机的水轮机叶片裂纹源定位[J]. 振动与冲击, 2010, 29(11): 226-229
WANG Xiang-hong;Zhu Chang-ming;MAO Han-ling;HUANG Zhenfeng . Combination of Kernel Principal Component Analysis and Support Vector Machines for Source Location of Cracks in Turbine Blades[J]. Journal of Vibration and Shock, 2010, 29(11): 226-229

PDF(1464 KB)

2177

Accesses

0

Citation

Detail

段落导航
相关文章

/