基于拓扑优化的压电分流阻尼抑振实验研究

杨智春;孙浩

振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 148-152.

PDF(1906 KB)
PDF(1906 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 148-152.
论文

基于拓扑优化的压电分流阻尼抑振实验研究

  • 杨智春;孙浩
作者信息 +

Experiments of Piezoelectric Shunt Damping for Vibration Control with Topology Optimization

  • Yang Zhichun; Sun Hao
Author information +
文章历史 +

摘要


将结构拓扑优化引入压电分流振动抑制中,以压电元件的分布面积为设计变量,压电元件产生的电荷最大化为优化目标,对压电元件的拓扑进行了优化以获得最佳抑振效果。针对悬臂梁结构,得到了对不同的结构模态进行抑制时的压电元件最优拓扑构型。建立了带有压电分流阻尼系统的悬臂梁振动控制实验模型,将压电元件拓扑优化后的压电分流阻尼系统应用于悬臂梁多阶弯曲模态的振动响应抑制实验,并对比分析了带最优拓扑和非优拓扑压电元件的悬臂梁压电分流阻尼抑振效果。结果表明,对压电元件进行拓扑优化可以明显提高压电分流阻尼系统的抑振效果。




Abstract

Topology optimization of piezoelectric transducer was proposed to improve vibration damping efficiency of piezoelectric shunt damping system. In this method, the distribution area of PZT transducer bonded on the host structure was defined as design variables to maximize the converted electrical energy in piezoelectric transducer, and the optimal topology of piezoelectric transducer was obtained. Firstly, the topology optimization of piezoelectric transducer for different modes vibration control of a cantilever beam was conducted. Then the experimental models for different modes vibration control of cantilever beams with optimal topology PZT transducers were built and piezoelectric damping vibration control tests for different modes vibration were performed. The comparison of vibration control efficiency between piezoelectric shunt damping systems with and without PZT transducer topology optimization was also presented. The results show that topology optimization of piezoelectric transducer can significantly increase the vibration control efficiency of piezoelectric shunt damping system.

关键词

压电分流 / 拓扑优化 / 振动控制 / 能量转换

Key words

piezoelectric shunt / topology optimization / vibration control / energy converting

引用本文

导出引用
杨智春;孙浩. 基于拓扑优化的压电分流阻尼抑振实验研究 [J]. 振动与冲击, 2010, 29(12): 148-152
Yang Zhichun;Sun Hao. Experiments of Piezoelectric Shunt Damping for Vibration Control with Topology Optimization[J]. Journal of Vibration and Shock, 2010, 29(12): 148-152

PDF(1906 KB)

Accesses

Citation

Detail

段落导航
相关文章

/