圆柱壳的轴向动力屈曲、参数共振与混沌运动

张善元;张涛

振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 34-38.

PDF(1471 KB)
PDF(1471 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 34-38.
论文

圆柱壳的轴向动力屈曲、参数共振与混沌运动

  • 张善元; 张涛
作者信息 +

The Axial Dynamic Buckling,Parametric Resonance and Chaotic Motion of a Closed Cylindrical Shell

  • Zhang Shanyuan; Zhang Tao
Author information +
文章历史 +

摘要


首先利用线性的动力屈曲方程,对受压的理想圆柱壳稳定性进行了动力分析。接着利用随时间周期变化的轴压载荷,导出了Mathieu方程,讨论了轴压柱壳的参数共振。在Donnell-Kármán大挠度方程中引入惯性力和阻尼力给出圆柱壳的非线性运动方程,借助Bubnov-Galerkin法,将其转化为含有三次非线性的常微分方程。在定性分析的基础上,利用次谐轨道Melnikov函数和同宿轨道的Melnikov函数分别给出了前屈曲和后屈曲情况下发生Smale马蹄型混沌的临界条件。在此基础上,选用适当参数借用MATLAB数学软件,计算了运动时程曲线、相图和Poincaré映射,给出了混沌运动的数字特征。


Abstract

The chaotic motion of a closed cylindrical shell undergoing an oscillating axial load is studied. The nonlinear motion equations of cylindrical shell are obtained by introducing inertial and damping force into Donnell-Kármán large deflection equations, and are transformed into an ordinary differential equation containing third-order nonlinear term by means of the Bubnov-Galerkin method. Based on qualitative analysis, the threshold conditions of the existence of horseshoe-type chaos are presented in the two case of pre-buckling and post-buckling by using of sub-harmonic obit and homoclinic orbit Melnikov function. Lastly, the time-history curve, phase portrait and Poincaré map are calculated by means of MATLAB software.

关键词

圆柱壳 / 轴向压缩 / 动力稳定 / 参数共振 / 混沌运动

Key words

cylindrical shell / axial compression / dynamic stability / parametric resonance / chaotic motion

引用本文

导出引用
张善元;张涛 . 圆柱壳的轴向动力屈曲、参数共振与混沌运动 [J]. 振动与冲击, 2010, 29(12): 34-38
Zhang Shanyuan;Zhang Tao. The Axial Dynamic Buckling,Parametric Resonance and Chaotic Motion of a Closed Cylindrical Shell[J]. Journal of Vibration and Shock, 2010, 29(12): 34-38

PDF(1471 KB)

Accesses

Citation

Detail

段落导航
相关文章

/