基于滑动平均与相关向量机的齿轮早期故障智能诊断

何创新;刘成良;李彦明;刘海宁

振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 89-92.

PDF(1674 KB)
PDF(1674 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (12) : 89-92.
论文

基于滑动平均与相关向量机的齿轮早期故障智能诊断

  • 何创新; 刘成良; 李彦明; 刘海宁
作者信息 +

INCIPIENT FAULT DIAGNOSIS BASED ON MOVING AVERAGE AND RELEVANCE VECTOR MACHINE

  • HE Chuang-Xin; LIU Cheng-Liang; LI Yan-Ming; LIU Hai-Ning
Author information +
文章历史 +

摘要


早期故障及时检测与预防维护具有很大的经济与安全意义,提出了一种基于相关向量机(RVM)的智能故障诊断方法用于检测齿轮早期故障。首先,小波包变换与Fisher准则结合,自动确定最优分解层次,并在小波包树节点能量中提取出具有最大分类能力的全局最优特征;其次,RVM用于训练故障诊断模型;最后,在线监控过程中,对连续监测的特征值做滑动平均滤波,再输入到故障诊断模型。实验表明,该方法具有很高的分类精度,RVM模型比SVM模型更适合在线故障监测。

Abstract

An intelligent fault diagnosis method based on relevance vector machine (RVM) is proposed for incipient fault detection of gear. First, by combining wavelet packet transform with Fisher criterion, it is able to adaptively find the optimal decomposition level and select the global optimal features from all node energies of full wavelet packet tree. Then, the RVM is adopted to train the fault diagnosis model. Finally, to improve accuracy for online continuous fault diagnosis, moving average is applied to each feature before it is input into the fault diagnosis model. Experimental results demonstrate that the proposed method can achieve very high classification accuracy and indicate that RVM is more suitable than SVM for online fault diagnosis.

关键词

故障诊断 / 小波包变换 / 相关向量机 / 滑动平均 / 状态监控

Key words

Fault diagnosis / Wavelet packet transform / Relevance vector machine / Moving average / Condition monitoring.

引用本文

导出引用
何创新;刘成良;李彦明;刘海宁. 基于滑动平均与相关向量机的齿轮早期故障智能诊断[J]. 振动与冲击, 2010, 29(12): 89-92
HE Chuang-Xin;LIU Cheng-Liang;LI Yan-Ming;LIU Hai-Ning. INCIPIENT FAULT DIAGNOSIS BASED ON MOVING AVERAGE AND RELEVANCE VECTOR MACHINE[J]. Journal of Vibration and Shock, 2010, 29(12): 89-92

PDF(1674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/