粘弹性Timoshenko梁非线性动力学行为的微分求积分析

李晶晶;胡育佳;程昌钧;郑剑

振动与冲击 ›› 2010, Vol. 29 ›› Issue (4) : 143-145.

PDF(961 KB)
PDF(961 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (4) : 143-145.
论文

粘弹性Timoshenko梁非线性动力学行为的微分求积分析

  • 李晶晶;胡育佳; 程昌钧; 郑剑
作者信息 +

DIFFERENTIAL QUADRATURE METHOD FOR NONLINEAR DYNAMICAL BEHAVIOR OF VISCOELASTIC TIMOSHENKO BEAM.

  • LI Jing-Jing; Hu Yu Jia; Cheng Chang-jun; Zheng Jian
Author information +
文章历史 +

摘要

对有限变形条件下,Timoshenko粘弹性梁非线性分析的数学模型应用推广的微分求积方法进行空域的离散,得到了简洁的矩阵形式的非线性数值逼近公式,时域上引进新的变量,得到了简支粘弹性梁运动的简化模型。然后利用非线性动力学中数值方法,分析了粘弹性Timoshenko梁的动力学行为。同时,为表明该方法的可靠性和有效性,研究了DQ解的收敛性和精确性。并考察了梁的材料、几何等参数对非线性粘弹性梁的动力学特性的影响.

Abstract

By the extended differential quadrature method , the motion equations governing the dynamical behavior of visco-elastic beam with finite deformations are discretized, and the nonlinear governing equations can be converted into an explicit matrix form in spatial domain. The dynamic behaviors of visco-elastic beam are numerically analyzed by introducing new variables in time domain. The classical methods in nonlinear dynamics are applied to reveal dynamical phenomena of visco-elastic beam. The convergence and comparison of solutions are studied. The results show that the DQ method presented in this paper is very reliable and valid. At the same time, the influences of geometric and material parameters on dynamic behaviors are investigated.

关键词

Boltzmann本构定律 / 有限变形 / 微分求积方法 / 动力学行为

Key words

Boltzmann superposition principle / finite deformations / differential quadrature method / dynamical behavior

引用本文

导出引用
李晶晶;胡育佳;程昌钧;郑剑. 粘弹性Timoshenko梁非线性动力学行为的微分求积分析[J]. 振动与冲击, 2010, 29(4): 143-145
LI Jing-Jing;Hu Yu Jia;Cheng Chang-jun;Zheng Jian. DIFFERENTIAL QUADRATURE METHOD FOR NONLINEAR DYNAMICAL BEHAVIOR OF VISCOELASTIC TIMOSHENKO BEAM.[J]. Journal of Vibration and Shock, 2010, 29(4): 143-145

PDF(961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/