一种改进的盲解卷积算法在轴承声学诊断中的应用

王 宇;迟毅林;伍 星;郭雄伟

振动与冲击 ›› 2010, Vol. 29 ›› Issue (6) : 11-14.

PDF(2255 KB)
PDF(2255 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (6) : 11-14.
论文

一种改进的盲解卷积算法在轴承声学诊断中的应用

  • 王 宇; 迟毅林; 伍 星; 郭雄伟
作者信息 +

Application of an improved blind deconvolution algorithm to acoustic-based rolling bearing defect detection

  • Yu Wang; Yilin Chi; Xing Wu; Xiongwei Guo
Author information +
文章历史 +

摘要


针对时域盲解卷积算法滤波器长度估计困难的缺点,提出一种基于遗传算法优化的改进算法。该算法利用遗传算法搜索最佳时延,解决了盲解卷积结果不确定问题,并改进了信号分量的聚类指标,采用峭度作为独立分量间距离测度,提高了信号分量聚类的准确性,获得了可靠的估计信号。计算机仿真和实际环境中故障轴承声信号提取实验验证了该算法的有效性。

Abstract

An improved time-domain blind deconvolution algorithm was proposed, based on genetic algorithm (GA) and higher order statistics (HOS). A newly defined distance measure based on kurtosis was employed to improve the classification accuracy of independent components in the cluster analysis process, and a GA was applied to search for an optimal length of blind deconvolution filters. With the help of these enhancements, this improved algorithm leads to perfect convolutive source separation for acoustic-based machine diagnosis. Both numerical and experimental studies were carried out. The results show that this algorithm can efficiently extract acoustic signals of fault bearings in real-world situations.

关键词

盲解卷积 / 滚动轴承 / 声学诊断 / 聚类 / 独立分量分析

Key words

Blind deconvolution / Rolling element Bearing / Acoustic-based machine diagnosis / Cluster analysis / Independent component analysis

引用本文

导出引用
王 宇;迟毅林;伍 星;郭雄伟. 一种改进的盲解卷积算法在轴承声学诊断中的应用[J]. 振动与冲击, 2010, 29(6): 11-14
Yu Wang;Yilin Chi;Xing Wu;Xiongwei Guo. Application of an improved blind deconvolution algorithm to acoustic-based rolling bearing defect detection[J]. Journal of Vibration and Shock, 2010, 29(6): 11-14

PDF(2255 KB)

2330

Accesses

0

Citation

Detail

段落导航
相关文章

/