分支管流固耦合振动的频域解析解

柳贡民;李艳华;朱卫华

振动与冲击 ›› 2010, Vol. 29 ›› Issue (7) : 33-37.

PDF(992 KB)
PDF(992 KB)
振动与冲击 ›› 2010, Vol. 29 ›› Issue (7) : 33-37.
论文

分支管流固耦合振动的频域解析解

  • 柳贡民1;李艳华1;朱卫华2

作者信息 +

ANALYTICAL SOLUTION IN FREQUENCY DOMAIN to VIBRATION IN a BRANCHED PIPE with FLUID-STRUCTURE INTERACTION

  • LIU Gong-min1;LI Yan-hua1;ZHU Wei-hua2
Author information +
文章历史 +

摘要

利用拉氏变换,把时域流固耦合14方程模型变换到频域,对频域方程进行推导,得到12个一元四阶常微分方程和2个一元二阶常微分方程,对其求解,得到了直管的频域解析解。然后结合分支点的平衡条件以及分支管的边界条件,求解得出任意形状分支管的频域解析解。最后,对结果进行仿真计算,利用英国Dundee大学Tijsseling教授的实验结果对计算结果进行验证,并对不同形状的分支管进行了仿真计算。

Abstract

The time-domain equation models descringbing axis vibration, lateral vibration and torsion with fluid-structure interation were transformed to ones in frequency domain using Laplace transformation and twelve fourth-order ordinary differential equations and two second order ordinary differential equations were obtained. Solving those equations in frequency domain, an analytical, solution in frequency domain to a single straight pipe was obtained. Then with the equilibrium and bownaery conditions a the branched point, the analytical solution in ftrquency dimain was deduced for an arbitrary shape branched pipe. Finally, simulations was were performed the results were verified by test data made by professor Tijsseling in Dundee University of England.

关键词

分支管 / 流固耦合 / 频域 / 解析解

Key words

branched pipe / fluid-structure interaction / frequency domain / analytical solution

引用本文

导出引用
柳贡民;李艳华;朱卫华. 分支管流固耦合振动的频域解析解[J]. 振动与冲击, 2010, 29(7): 33-37
LIU Gong-min;LI Yan-hua;ZHU Wei-hua. ANALYTICAL SOLUTION IN FREQUENCY DOMAIN to VIBRATION IN a BRANCHED PIPE with FLUID-STRUCTURE INTERACTION[J]. Journal of Vibration and Shock, 2010, 29(7): 33-37

PDF(992 KB)

3006

Accesses

0

Citation

Detail

段落导航
相关文章

/