基于绝对节点坐标法的输流管道非线性动力学分析

蔡逢春;臧峰刚;叶献辉;黄茜

振动与冲击 ›› 2011, Vol. 30 ›› Issue (6) : 143-146.

PDF(1569 KB)
PDF(1569 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (6) : 143-146.
论文

基于绝对节点坐标法的输流管道非线性动力学分析

  • 蔡逢春;臧峰刚; 叶献辉;黄茜
作者信息 +

Analysis of Nonlinear dynamic behavior of the pipe conveying fluid based on absolute nodal coordinate formulation

  • Cai Fengchun; Zang Fenggang;Ye Xianhui;Huang Qian
Author information +
文章历史 +

摘要

基于绝对节点坐标法,建立一种新的一维二节点输流管道单元。应用Irschik提出的适用于含非材料体系统的Lagrange方程推导输流管道单元的运动方程。采用Euler梁来模拟管道,并完全采用非线性Green应变张量和第二Piola Kirchhoff应力张量,没有任何量级近似,也没有假设悬臂输流管道的轴线不可伸长,并考虑材料的泊松效应对流速的影响,因此通过该方法得到的运动方程比传统的通过量级近似得到的输流管道的运动方程更合理。通过数值计算,分析不同边界条件下的输流管道非线性行为,并与经典输流管道运动方程的计算结果比较,结果表明本文中的方法更合理

Abstract

Based on absolute nodal coordinate formulation(ANCF), a new pipe finite element conveying fluid is presented. An extended version of Lagrange’s equations which are written for the system containing non-material volumes by Irschik, are used to obtain the equations of the pipe finite element conveying fluid. The pipe is modeled as Bernoulli Euler beam theory and the fully nonlinear Green stain tensor and second Piola Kirchhoff stress tensor are used. The influences of the lateral contraction resulted from axial elongation of the pipe on the fluid velocity are taken into account and the assumption that the cantilevered pipe is inextensible is not assumed. Consequently, the proposed equations are better than the existed equation in which order-of-magnitude consideration have been performed during derivation. The numerical results of the pipes with different boundary conditions are depicted and compared with the existed works. The proposed methods provided accurate results

关键词

绝对节点坐标法 / 输流管道 / 非线性振动 / 稳定性

Key words

absolute nodal coordinate formulation / pipe conveying fluid / nonlinear oscillation / stability

引用本文

导出引用
蔡逢春;臧峰刚;叶献辉;黄茜. 基于绝对节点坐标法的输流管道非线性动力学分析[J]. 振动与冲击, 2011, 30(6): 143-146
Cai Fengchun;Zang Fenggang;Ye Xianhui;Huang Qian. Analysis of Nonlinear dynamic behavior of the pipe conveying fluid based on absolute nodal coordinate formulation[J]. Journal of Vibration and Shock, 2011, 30(6): 143-146

PDF(1569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/