基于结点6自由度的输电线舞动有限元分析

晏致涛; 李正良;杨振华

振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 112-117.

PDF(1496 KB)
PDF(1496 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 112-117.
论文

基于结点6自由度的输电线舞动有限元分析

  • 晏致涛; 李正良; 杨振华
作者信息 +

Finite element modeling of transmission line galloping based on 6-DOF node

  • Yan Zhi-tao; Li Zheng-Liang;Yang Zhen-hua
Author information +
文章历史 +

摘要

传统的输电线3自由度舞动分析模型无法考虑扭转与平动的耦合作用及扭转运动的非线性。基于空间曲梁理论的应变—位移关系,建立了具有3个平动自由度和3个转角自由度结点的覆冰输电线舞动分析有限元模型。考虑覆冰导线所受空气动力的非线性和导线大幅运动的几何非线性,利用虚功原理建立基于更新Lagrange格式的覆冰导线非线性运动方程。采用 Newmark时间积分和 Newton-Raphson非线性迭代法求解有限元方程。算例分析表明, 利用结点6自由度覆冰导线单元计算输电线的静动力及舞动分析是准确的。对输电线的舞动分析表明,输电线的抗弯截面模量对输电线的平动和扭转有较大的影响。

Abstract

The coupling of translational and torsional movement, the non-linearity cannot be considered in traditional galloping transmission line analytical model of 3-DOF node. Based on the strain - displacement relations of spatial curved beam theory, the finite element model of iced transmission line galloping is proposed, which contains three translational degrees of freedom and three rotational degrees of freedom. based on virtual work principle, the updated Lagrange nonlinear equations of motion iced conductor are formulated considering the aerodynamic non-linear and geometric non-linear. The Newmark time integration and the Newton-Raphson iteration method is used to solve non-linear finite element equation. An example analysis showed that the iced cable element of 6-DOF node used to calculate the static and dynamic power lines and the galloping analysis is accurate. The results of transmission line galloping analysis show that the cross-section bending modulus of the transmission line has a certain impact on translational and torsional movement.

关键词

6自由度 / 输电线 / 舞动 / 有限元 / 非线性

Key words

6-DOF / transmission lines / galloping / finite element / nonlinear

引用本文

导出引用
晏致涛; 李正良;杨振华. 基于结点6自由度的输电线舞动有限元分析[J]. 振动与冲击, 2011, 30(8): 112-117
Yan Zhi-tao;Li Zheng-Liang;Yang Zhen-hua. Finite element modeling of transmission line galloping based on 6-DOF node [J]. Journal of Vibration and Shock, 2011, 30(8): 112-117

PDF(1496 KB)

1395

Accesses

0

Citation

Detail

段落导航
相关文章

/