基于小波包变换和奇异值分解的柴油机振动信号特征提取研究

李国宾;关德林; 李廷举

振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 149-152.

PDF(1323 KB)
PDF(1323 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 149-152.
论文

基于小波包变换和奇异值分解的柴油机振动信号特征提取研究

  • 国宾1,2; 关德林2; 李廷举1
作者信息 +

Study on Feature Extraction of Diesel Engine Vibration Signal Based on Waveletpacket Transform and Singularity Value Decomposition

  • LI Guo-bin1,2; GUAN De-lin2; LI Ting-ju1
Author information +
文章历史 +

摘要

为通过振动信号识别柴油机的工作状态,提出利用小波包变换和奇异值分解提取振动信号特征的新方法。给出了小波包变换算法及奇异值分解算法,依据矩阵奇异值特征向量,定义了振动信号特征参数,并探讨了特征参数与柴油机运行状态之间的内在联系。结果表明:特征参数能够敏感地反映柴油机工作性能的变化。随着柴油机工作性能的恶化,振动强度的增加,特征参数变大。特征参数可作为柴油机状态监测和故障诊断的特征量。

Abstract

In order to recognize the operating conditions of diesel engine, a novel approach for extracting feature of vibration signals was proposed using waveletpacket transform and singularity value decomposition. The waveletpacket transform and the singularity value decomposition arithmetic were introduced. The characteristic parameters were defined based on the singular value characteristic vector. The intrinsic relationship between the characteristic parameters and the operating condition of diesel engine were discussed. It has been shown that the characteristic parameters can sensitively reflect the working performance of diesel engine. When the working performance of diesel engine turns for the worse and the intensity of vibration increases, the characteristic parameters appear larger. Therefore the characteristic parameters could be considered as parameters to inspect and diagnose the state and the fault of engine.

关键词

振动信号 / 柴油机 / 小波包变换 / 奇异值分解 / 特征参数

Key words

vibration signal / diesel engine / waveletpacket transform / singularity value decomposition / characteristic parameter

引用本文

导出引用
李国宾;关德林; 李廷举 . 基于小波包变换和奇异值分解的柴油机振动信号特征提取研究[J]. 振动与冲击, 2011, 30(8): 149-152
LI Guo-bin; GUAN De-lin; LI Ting-ju. Study on Feature Extraction of Diesel Engine Vibration Signal Based on Waveletpacket Transform and Singularity Value Decomposition[J]. Journal of Vibration and Shock, 2011, 30(8): 149-152

PDF(1323 KB)

Accesses

Citation

Detail

段落导航
相关文章

/