具拟线性扩散系数的脉冲中立型抛物系统的(强)振动性

罗李平; 俞元洪

振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 183-186.

PDF(946 KB)
PDF(946 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 183-186.
论文

具拟线性扩散系数的脉冲中立型抛物系统的(强)振动性

  • 罗李平1; 俞元洪2

作者信息 +

(Strong) Oscillation for Systems of Impulsive Neutral Parabolic Equations with Quasilinear Diffusion Coefficient

  • LUO Li-ping1; YU Yuan-hong2

Author information +
文章历史 +

摘要

研究一类具拟线性扩散系数的脉冲中立型抛物偏微分系统解的(强)振动性, 直接利用振动的定义、Green公式和Newmann边值条件将这类脉冲中立型抛物系统的振动问题转化为脉冲中立型微分不等式不存在最终正解的问题, 并利用最终正解的定义和脉冲中立型微分不等式, 获得了该类系统(强)振动的充分判据. 所得结果充分反映了脉冲和时滞在振动中的影响作用.

Abstract

The (strong) oscillation of solutions for the systems of a class of quasilinear impulsive neutral parabolic partial differential equations with quasilinear diffusion coefficient is studied. By using the oscillatory definition, Greens formula and Newmann boundary condition directly, the oscillatory problem of solution to the systems of impulsive neutral parabolic equations is reduced to the problem of which impulsive neutral differential inequality hasnt eventually position solution, and thereby some sufficient criteria are obtained for the (strong) oscillation of such systems via the definition of eventually position solution and impulsive neutral differential inequality. The obtained results fully reflect the influence action of impulses and delays in oscillation.

关键词

拟线性扩散系数 / 脉冲 / 中立型 / 抛物偏微分系统 / (强)振动

Key words

quasilinear diffusion coefficient / impulse / systems of neutral parabolic partial differential equations / (strong) oscillation

引用本文

导出引用
罗李平; 俞元洪. 具拟线性扩散系数的脉冲中立型抛物系统的(强)振动性[J]. 振动与冲击, 2011, 30(8): 183-186
LUO Li-ping;YU Yuan-hong. (Strong) Oscillation for Systems of Impulsive Neutral Parabolic Equations with Quasilinear Diffusion Coefficient[J]. Journal of Vibration and Shock, 2011, 30(8): 183-186

PDF(946 KB)

1417

Accesses

0

Citation

Detail

段落导航
相关文章

/