索牵引并联机器人中变长度柔索的动力学分析

杜敬利;保宏;宗亚雳;崔传贞

振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 19-23.

PDF(1627 KB)
PDF(1627 KB)
振动与冲击 ›› 2011, Vol. 30 ›› Issue (8) : 19-23.
论文

索牵引并联机器人中变长度柔索的动力学分析

  • 杜敬利; 保宏; 宗亚雳;崔传贞
作者信息 +

Dynamic Analysis of Cables with Varying-Length in Cable-Driven Parallel Robots

  • DU Jing-li;BAO Hong; ZONG Yali;CUI Chuan-zhen
Author information +
文章历史 +

摘要

现有索牵引并联机器人研究中大多将柔索处理成简单的索杆单元,没有充分考虑柔索的动力学特性对末端执行器定位精度的影响。为此,本文提出了一种柔索长度慢速变化时的索牵引并联机器人动力学模型。文中首先推导了描述变长度柔索动力学特性的偏微分方程,空间离散化后采用有限差分法将其转换成普通微分方程。然后,根据末端执行器与柔索之间的动力耦合关系,得出索牵引并联机器人的动力学模型,模型中同时包含有柔索和末端执行器的自由度。最后,给出两个算例来验证本文模型的有效性,同时说明工作空间巨大时考虑柔索动态特性的必要性。

Abstract

In conventional researches, cables of cable-driven parallel robots are treated as simple linear cable elements. This results in the fact that the effect of cable dynamics on the positioning precision of the end-effector is not adequately taken in account. In this paper, a dynamic model for cable-driven parallel robots with cables of slowly time-varying length is presented. The partial differential equations characterizing the dynamics of a cable with time-varying length are deduced, and converted into ordinary differential equations using finite difference method for their spatial discretization. Then, the dynamics of cable-driven parallel robots are achieved considering the couple between dynamics of the end-effector and cables, in which the degrees of freedom of cables and the end-effector are all involved. Two numerical examples are presented to validate the dynamic model in the paper, and also show that it is necessary to take into consideration of the cable dynamics for robots of large workspace.

关键词

索牵引机器人 / 时变索长 / 柔索动力学 / 有限差分 / 振动

Key words

Cable-driven manipulator / Time-varying cable length / Cable dynamics / Finite difference / Vibration

引用本文

导出引用
杜敬利;保宏;宗亚雳;崔传贞. 索牵引并联机器人中变长度柔索的动力学分析[J]. 振动与冲击, 2011, 30(8): 19-23
DU Jing-li;BAO Hong;ZONG Yali;CUI Chuan-zhen. Dynamic Analysis of Cables with Varying-Length in Cable-Driven Parallel Robots[J]. Journal of Vibration and Shock, 2011, 30(8): 19-23

PDF(1627 KB)

1718

Accesses

0

Citation

Detail

段落导航
相关文章

/