对称型内平动齿轮系统的非线性动力学分析

赵自强;赵利敏;程爱明;张春林

振动与冲击 ›› 2012, Vol. 31 ›› Issue (15) : 68-74.

PDF(3781 KB)
PDF(3781 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (15) : 68-74.
论文

对称型内平动齿轮系统的非线性动力学分析

  • 赵自强1, 赵利敏2, 程爱明3, 张春林1
作者信息 +

Non-linear dynamic analysis of the internal parallel movinggear system with two symmetrically parallel moving gears

  • Zhao Ziqiang1, Zhao Limin2, Cheng Aiming3, Zhang Chunlin1
Author information +
文章历史 +

摘要

摘要:基于拉格朗日方程,建立了含有两个呈对称布置的平动齿轮的内平动齿轮传动机构的动力学模型,通过啮合相对位移函数分析及无量纲化处理,得到系统的无量纲6自由度运动微分方程。通过对系统可能存在的不对称因素(平动齿轮支撑轴承不对称、啮合间隙不对称以及平动齿轮受载不对称)对系统动力学特性的影响进行分析,表明三种不对称因素均会引起系统的分岔,且混沌区域随非对称因素的不同表现出不同的分布规律,并且使得周期解呈现出不同的特性。

Abstract

Abstract: Based on Lagrange equations, dynamic model of Internal Parallel Moving Gear Transmission mechanism with two parallel moving gears distributed symmetrically was established. Through analysis of relative displacement meshing function and dimensionless dispose, the 6 degrees of freedom dimensionless differential equation of the system could be gotten. And through analysis of the impacts to systematic dynamical characters caused by asymmetrical factors, such as asymmetry of axial (steady) bearings, asymmetry of meshing clearances or asymmetry of loads of two parallel moving gears, it indicated that all three types of asymmetrical factors will result in bifurcation of the system. Besides, different asymmetrical factors will lead to different distributed laws of the chaos area and different characteristics of periodic solutions.

关键词

关键字:内平动齿轮系统 / 动力学特性 / 分岔 / 周期解 / 混沌

Key words

Internal parallel moving gear mechanism / Dynamic characteristics / Bifurcation / Periodic solution / Chaos

引用本文

导出引用
赵自强;赵利敏;程爱明;张春林. 对称型内平动齿轮系统的非线性动力学分析[J]. 振动与冲击, 2012, 31(15): 68-74
Zhao Ziqiang;Zhao Limin;Cheng Aiming;Zhang Chunlin. Non-linear dynamic analysis of the internal parallel movinggear system with two symmetrically parallel moving gears[J]. Journal of Vibration and Shock, 2012, 31(15): 68-74

PDF(3781 KB)

935

Accesses

0

Citation

Detail

段落导航
相关文章

/