无理式系统的主共振分岔分析

刘延彬;陈予恕;曹庆杰

振动与冲击 ›› 2012, Vol. 31 ›› Issue (2) : 151-154.

PDF(1292 KB)
PDF(1292 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (2) : 151-154.
论文

无理式系统的主共振分岔分析

  • 刘延彬; 陈予恕; 曹庆杰
作者信息 +

The bifurcations of resonance in irrational system

  • Liu Yan-bin; Chen Yu-shu; Cao Qing-jie
Author information +
文章历史 +

摘要

研究了一类无理式系统的主共振分岔。该系统为一连杆系统模型,其动力学行为取决于光滑参数 ,当 时,其为正刚度系统;当 时,其为负刚度系统;当 时,其为线性系统。当 逐渐增加时,系统从弱非线性系统变成强非线性系统。研究结果表明,无理式系统的性质和多项式系统的性质是不同的。最后采用奇异性理论分析了共振解的演化过程

Abstract

In this paper, the bifurcations of resonance in an irrational system are studied. The system is derived from a linkage mechanism and its dynamic behavior is determined by smooth parameter . When , the nonlinear stiffness in the system is positive; when , it is negative; when , the system is linear. When increase from small to big, the system change from weakly nonlinear system to strongly nonlinear system. The research results show that the properties of irrational system are different from that of polynomial system. Finally we studied the evolution process of the resonance solution by employing singularity theory.

关键词

无理式系统 / 共振 / 分岔

Key words

Irrational system / resonance / bifurcation

引用本文

导出引用
刘延彬;陈予恕;曹庆杰. 无理式系统的主共振分岔分析[J]. 振动与冲击, 2012, 31(2): 151-154
Liu Yan-bin;Chen Yu-shu;Cao Qing-jie . The bifurcations of resonance in irrational system[J]. Journal of Vibration and Shock, 2012, 31(2): 151-154

PDF(1292 KB)

1224

Accesses

0

Citation

Detail

段落导航
相关文章

/