杆、梁有限元模型的模态的振荡性质

郑子君;陈 璞&#;王大钧

振动与冲击 ›› 2012, Vol. 31 ›› Issue (20) : 79-83.

PDF(1025 KB)
PDF(1025 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (20) : 79-83.
论文

杆、梁有限元模型的模态的振荡性质

  • 郑子君 ,陈 璞,王大钧
作者信息 +

Oscillation Property of the Eigen Modes of the FE Bars and Beams

  • Zheng ZJ, Chen P, Wang DJ
Author information +
文章历史 +

摘要

杆、弦、梁等常见一维连续体的固有模态具有振荡性质。一维连续体进行离散后的固有模态是否仍具有振荡性质,表征着数值计算是否真实反映了原问题。业已通过化柔度矩阵为三对角矩阵的乘积的方法证明了:常见支承条件下的有限差分梁、杆以及采用集中质量矩阵的有限元杆、弦的模态具有振荡性质。在有限元计算中,Euler梁通常采用带转角变量的Hermite三次插值函数进行离散,目前尚未见到此种离散梁的模态是否具有振荡性质的论述。从连续杆、弦、梁的振荡性质出发,结合有限元解的特性,指出在集中质量矩阵的条件下,如果离散模型在结点集中力作用下,结点位移与解析解相等,则此离散模型的模态具有振荡性质;具体说来,杆、弦的有限元模型模态具有振荡性质,从最小余能原理构造的梁有限元模型模态具有振荡性质;对于Hermite三次插值函数的位移Euler梁单元,若截面参数在单元内取常数,模态也具有此性质;但是,若截面参数在单元内不为常数,模态未必具有振荡性质。

Abstract

The eigen modes of continuous bars, strings and Euler beams constrained only at their 2 ends have an important qualitative property called oscillation property. Appreciate discrete models of bars, strings and Euler beams are anticipated to mirror the oscillation property in discrete form. With help of an algebraic approach involving tri- and penta-diagonal matrix, the discrete eigen modes of bars, strings and beams obtained through finite difference method were proved to have the oscillation property invariably, regardless of grid and mass distribution. In this paper, we prove that if the modes of finite element model equal to the modes of analytic models at nodes, then the modes of finite element model own oscillation property. Furthermore, the oscillation property does also correctly for the eigen modes of bars and strings discretized by 2-nodes finite elements with lumped mass matrix. However, Euler beam meshed with the 2-nodes cubic Hermitian elements, the stiffness matrixes are no longer tri- or penta-diagonal and the algebraic approach does not work. In this paper, the discrete oscillation property of bars, strings and Euler beam meshed with finite elements is discussed by a new approach, i.e., checking an equivalent condition of the oscillation property. We proved in this paper that eigen modes of FE discrete Euler beam with lumped mass has oscillation property invariably, if stiffness matrices are derived by flexibility approach. The 2-nodes cubic Hermitian element may lead to failure of oscillation property, if the beam section varies severely in elements. Numerical examples supported our conclusion.

关键词

振荡性质 / 有限元法 / Euler梁 / Hermite梁单元

Key words

eigen modes / oscillation property / FEM / Euler beam / Hermite beam element

引用本文

导出引用
郑子君;陈 璞&#;王大钧. 杆、梁有限元模型的模态的振荡性质 [J]. 振动与冲击, 2012, 31(20): 79-83
Zheng ZJ; Chen P; Wang DJ. Oscillation Property of the Eigen Modes of the FE Bars and Beams[J]. Journal of Vibration and Shock, 2012, 31(20): 79-83

PDF(1025 KB)

1169

Accesses

0

Citation

Detail

段落导航
相关文章

/