基于SVD降噪和盲信号分离的滚动轴承故障诊断

陈恩利;张玺;申永军;曹轩铭

振动与冲击 ›› 2012, Vol. 31 ›› Issue (23) : 185-190.

PDF(1891 KB)
PDF(1891 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (23) : 185-190.
论文

基于SVD降噪和盲信号分离的滚动轴承故障诊断

  • 陈恩利,张玺,申永军,曹轩铭
作者信息 +

Fault Diagnosis of Rolling Bearing Based on SVD Denoising and Blind Signals Separation

  • CHEN En-li, ZHANG Xi, SHEN Yong-jun ,CAO Xuan-ming
Author information +
文章历史 +

摘要

滚动轴承早期微弱故障特征信号往往淹没于系统噪声信号中而难于识别,奇异值分解技术(SVD )可以有效降低噪声水平,提高周期成分的提取能力,盲源分离技术可以分离故障源信号并提取故障特征。本文将奇异值分解技术和盲信号分离技术的优势应用于滚动轴承故障诊断,利用奇异值分解降噪特性消除系统信号中的混合噪声,对降噪后的信号通过盲信号分离技术进行盲源分离,提取出原始故障信号。数值仿真及实验结果表明,该方法可以成功地分离出滚动轴承实测信号的典型故障,提高滚动轴承故障诊断的效果。

Abstract

Early fault signal of the rolling bearing which submerged by the system noise signal is weak and difficult to identify. Singular value decomposition (SVD) technology can reduce the noise effectively and extract periodical signal availably, blind signals separation(BSS) can separate fault source signals and extract fault characteristics. Using the advantages of SVD and BSS for the rolling bearing fault diagnosis in this paper, the composite noise of system signals were eliminated by the SVD algorithm, the signals after processing were separated by the BSS algorithm, then the original fault signals characters were extracted. The numerical simulation examples and experimental results show that this method is successful in separating typical fault for rolling bearings, which improved the effect of rolling bearing fault diagnosis.

关键词

滚动轴承 / 故障诊断 / 奇异值分解 / 盲信号分离

Key words

rolling bearing / faults diagnosis / singularity value decomposition / blind signals separation

引用本文

导出引用
陈恩利;张玺;申永军;曹轩铭. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185-190
CHEN En-li;ZHANG Xi;SHEN Yong-jun;CAO Xuan-ming. Fault Diagnosis of Rolling Bearing Based on SVD Denoising and Blind Signals Separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185-190

PDF(1891 KB)

Accesses

Citation

Detail

段落导航
相关文章

/