含裂纹两端铰支输流管道在振荡流作用下的非线性动力特性研究

蔡逢春;臧峰刚;梁艳仙

振动与冲击 ›› 2012, Vol. 31 ›› Issue (4) : 162-167.

PDF(2260 KB)
PDF(2260 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (4) : 162-167.
论文

含裂纹两端铰支输流管道在振荡流作用下的非线性动力特性研究

  • 蔡逢春1; 臧峰刚1; 梁艳仙2
作者信息 +

nonlinear dynamic behaviors of a cracked hinged-hinged pipe conveying pulsating fluid

  • Cai Feng-chun1; Zang Feng-gang1; Liang Yan-xian2
Author information +
文章历史 +

摘要

基于适用于非材料体系统的Lagrange方程建立起含裂纹两端铰支输流管道在振荡流作用下的运动方程,考虑了瞬变呼吸裂纹非线性模型和几何非线性。采用数值方法研究了有/无裂纹输流管道在各个参数共振区域内的运动形态,结果表明由于裂纹的存在,输流管道系统表现出更加丰富的动力学行为,如倍周期运动和混沌运动。含裂纹输流管道系统通过倍周期分岔途径进入混沌,通过倍周期倒分岔脱离混沌

Abstract

Based on the Lagrange’s equation written for the system containing non-material volumes, the equation of motion for the hinged-hinged pipes conveying fluid with a breathing crack is derived and the Geometric nonlinearity is considered. The dynamical behaviors of the cracked/uncracked pipe conveying fluid in the instability regions are studied by numerical methods. The results show that the dynamical behaviors of the cracked pipes conveying fluid may be much richer, such as periodic motion and chaotic motion. For the cracked pipe conveying fluid, a series of periodic-doubling bifurcations lead to chaotic motion and a series of inverse periodic-doubling bifurcations is the way to leave chaotic motion.

关键词

呼吸裂纹 / 输流管道 / 参数共振 / 混沌运动

Key words

breathing crack / pipes conveying fluid / parametric resonance / chaotic motion

引用本文

导出引用
蔡逢春;臧峰刚;梁艳仙. 含裂纹两端铰支输流管道在振荡流作用下的非线性动力特性研究[J]. 振动与冲击, 2012, 31(4): 162-167
Cai Feng-chun; Zang Feng-gang;Liang Yan-xian. nonlinear dynamic behaviors of a cracked hinged-hinged pipe conveying pulsating fluid[J]. Journal of Vibration and Shock, 2012, 31(4): 162-167

PDF(2260 KB)

1452

Accesses

0

Citation

Detail

段落导航
相关文章

/