摘要
为实现加工中心动静态性能不低于优化前性能,达到整机重量最轻的要求,本文提出了一种复合优化方法来研究多变量、多约束和多目标的数控加工中心优化设计。采用有限元分析和实验模态测试方法分析各大件动态性能,并验证了有限元模型的精确性。然后以该有限元模型为基础进行静态分析,得出各大件的最大变形及应力等。以柔度为目标,采用变密度法拓扑优化设计立柱结构的外形框架;以固有频率为目标,基于元结构的可适应性动态优化方法设计加工中心的筋板结构;以固有频率和质量为目标,基于响应面法的尺寸优化确定各结构的最优尺寸。最后将优化后的各大件进行整机装配,分析校核整机动静态性能。分析结果表明,优化后的整机在保证加工中心动静态性能的条件下,整机质量从12749kg减少到12127kg,减重达到4.9%,达到了整机的优化设计要求,说明该方法具有较高的精度和较强的工程实用性。
Abstract
In order to satisfy the performance requirement of the dynamic and static stiffness of machining center and minimize weight. A composite optimization method is proposed to study a design of machining center which involves multi-variable, multi-constraint and multi-objective.By combining finite element analysis with modal test, the performance of the dynamic and static is identified, proving the accuracy of finite element model.then, the maximum deformation and stress of the parts is obtained by static analysis based on the finite element model. Taking the compliance as goal, Topology optimization is adopted to design the shape of column structure framework; Taking the natural frequency as goal, Adaptive dynamic optimization method based on unit structure is used to design the rib structure of machining center; Taking the quality and natural frequency as goal, Response Surface Methodology is used to determine the optimal size and the best thickness of structure. Finally, the performance of the dynamic and static is analyzed、checked and optimized after the parts of machining center are assembled, the results of the analysis show that the weight of maching center was reduced from 12749kg to 12127kg,reduced by 4.9%. the results show the method has high precision and strong practicability
关键词
多目标优化 /
拓扑优化 /
元结构 /
响应面法 /
有限元
{{custom_keyword}} /
Key words
multi-objective optimization /
topology optimization unit /
structure response /
surface methodology /
finite element method
{{custom_keyword}} /
彭艳华;管贻生;张宪民;姜横;龚循飞;陈忠;许冠;毛卫东.
基于复合优化方法立式数控加工中心的多目标优化设计[J]. 振动与冲击, 2012, 31(6): 48-52,5
PENG Yan-hua;GUAN Yi-sheng;ZHANG Xian-min;CHEN Zhong;XU Guan .
Multi-objective optimization design of a vertical machining center based on composite optimization method [J]. Journal of Vibration and Shock, 2012, 31(6): 48-52,5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}