排列熵算法参数的优化确定方法研究

饶国强;冯辅周;司爱威;谢金良

振动与冲击 ›› 2014, Vol. 33 ›› Issue (1) : 188-193.

PDF(1475 KB)
PDF(1475 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (1) : 188-193.
论文

排列熵算法参数的优化确定方法研究

  • 饶国强, 冯辅周 ,司爱威, 谢金良
作者信息 +

Optimal Determination Method of Parameters in Permutation Entropy Algorithm

  • RAO Guo-qiang, FENG Fu-zhou, SI Ai-wei, XIE Jin-liang
Author information +
文章历史 +

摘要

由于排列熵算法能够有效放大时间序列的微弱变化,且计算简单、实时性好,已在信号突变检测方面显示出良好的应用前景,但是排列熵算法中嵌入维数和延迟时间等参数的确定仍依赖于经验和尝试,该问题已成为排列熵算法走向工程应用的瓶颈问题。根据排列熵算法的原理,提出了基于重构时间序列最佳相空间来确定模型参数的方法。根据相空间重构的两种观点,介绍了延迟时间与嵌入维数独立确定和联合确定两种方法的基本理论,然后利用仿真信号和滚动轴承全寿命数据对两种算法进行了检验和对比。结果表明,模型参数的独立确定方法比联合确定方法对信号的异常检测更好。

Abstract

Since permutation entropy (PE) algorithm can better magnify tiny change of a time series data, is computed simply and shows good quality in real-time application, which has given us a good application prospect in sudden change detection of a signal, but whose parameters that are embedding dimension and delay time are still determined by experience or trial, this problem has been a bottle-neck of the PE algorithm for engineering application. For theory of the PE algorithm, method based on reconstructing optimal phase space of time series is put forward to determine model parameters. Considering to two views on phase space reconstruction, basic theories of independent and joint determination methods are introduced to determine delay time and embedding dimension. Then validation and comparison of methods are carried out by simulated signal and whole life data of rolling bearing, it is concluded that the independent determination of model parameters was better than joint determination for abnormality detection.



关键词

排列熵 / 互信息 / 假近邻 / 关联积分法

Key words

Permutation Entropy / Mutual Information / False Nearest Neighbor / C-C Method

引用本文

导出引用
饶国强;冯辅周;司爱威;谢金良. 排列熵算法参数的优化确定方法研究[J]. 振动与冲击, 2014, 33(1): 188-193
RAO Guo-qiang;FENG Fu-zhou;SI Ai-wei;XIE Jin-liang. Optimal Determination Method of Parameters in Permutation Entropy Algorithm[J]. Journal of Vibration and Shock, 2014, 33(1): 188-193

PDF(1475 KB)

1460

Accesses

0

Citation

Detail

段落导航
相关文章

/