一种基于小波包样本熵和流形学习的故障特征提取模型

向 丹;;葛 爽

振动与冲击 ›› 2014, Vol. 33 ›› Issue (11) : 1-5.

PDF(1830 KB)
PDF(1830 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (11) : 1-5.
论文

一种基于小波包样本熵和流形学习的故障特征提取模型

  • 向 丹1,2 ,葛 爽2
作者信息 +

A model of fault feature extraction based on wavelet packet sample entropy and manifold learning

  • XIANG dan1,2, GE Shuang2
Author information +
文章历史 +

摘要

针对机械故障信号的非线性、故障征兆的多样性和复杂性等诊断问题,提出了一种基于小波包样本熵和流形学习的故障特征提取模型。该模型首先利用小波包的分解和重构,计算重构细节信号的样本熵,初步提取滚动轴承故障特征,然后利用流形学习法对初步的样本熵故障特征进行进一步的提取,在保留故障特征的整体几何结构信息的同时降低了特征数据的复杂度,增强了故障模式识别的分类性能。最后通过支持向量机对该模型提取的特征进行分类,通过比较初提取特征和再提取特征分类效果来验证该模型的优越性。

Abstract

This paper is concerned with the mechine fault diagnosis problem of nonlinearities, and diversities and complexities of fault symptoms. Based on the wavelet packet sample entropy and manifold learning, a model of fault feature extraction is proposed. Firstly, to extract the initial rolling bearing fault feature, the model calculates the sample entropy of the signal reconstructed by using the wavelet packet decomposition and reconstruction method. Then the Local Tangent Space Alignment (LTSA) for further extraction is applied. In this sense, the model greatly reduces the complexity of feature data. In the meanwhile, the structure information in the whole geometry of the fault signal can be reserved. Moreover, the proposed model also enhances the classification performance of the entire fault mode
identification. Finally, the support vector machine is used to classify the feature extraction from the proposed model. The primary feature extraction and further feature extraction of classification results are then compared to validate the superiority of the proposed model.

关键词

小波包 / 样本熵 / 流形学习 / 特征提取 / 支持向量机

Key words

Wavelet packet / sample entropy / manifold learning / feature extraction / SVM

引用本文

导出引用
向 丹;;葛 爽. 一种基于小波包样本熵和流形学习的故障特征提取模型[J]. 振动与冲击, 2014, 33(11): 1-5
XIANG dan;GE Shuang. A model of fault feature extraction based on wavelet packet sample entropy and manifold learning[J]. Journal of Vibration and Shock, 2014, 33(11): 1-5

PDF(1830 KB)

861

Accesses

0

Citation

Detail

段落导航
相关文章

/