基于自适应多小波与综合距离评估指数的旋转机械故障特征提取

卢娜;肖志怀;张广涛;孙召辉

振动与冲击 ›› 2014, Vol. 33 ›› Issue (12) : 193-199.

PDF(1498 KB)
PDF(1498 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (12) : 193-199.
论文

基于自适应多小波与综合距离评估指数的旋转机械故障特征提取

  • 卢娜, 肖志怀,张广涛,孙召辉
作者信息 +

Feature extraction based on adaptive multiwavelets and synthesis distance evaluation index for rotating machinery fault diagnosis

  • LU Na XIAO Zhi-huai ZHANG Guang-tao SUN Zhao-hui
Author information +
文章历史 +

摘要

旋转机械设备故障诊断主要包括信号采集、特征提取和故障识别,而特征提取是进行故障诊断的基础和保证诊断结果正确的关键,为了提高特征参数对故障的敏感性,提出了基于自适应多小波与综合距离评估指数的旋转机械故障特征提取方法。该方法以综合距离评估指数最大值为目标函数,利用遗传算法从CL3自适应多小波库中选择最优多小波,并将该最优多小波用于转子振动信号的特征提取。通过对正常、不对中、不平衡、碰摩四种设备状态下采集的振动信号进行特征提取,并将所提出的方法和传统特征提取方法提取的特征参数输入到K-最邻近分类器进行分析,结果表明,所提出的方法能够大大增强特征参数对故障的敏感性,获得更高的故障诊断准确率。

Abstract

The process of rotating machinery fault diagnosis is composed of signal acquisition, feature extraction and fault identification, among which feature extraction is the foundation of fault diagnosis and the key to obtaining accurate diagnosis results. To improve the sensitivity of the extracted features, a feature extraction method based on adaptive multiwavelets and synthesis distance evaluation index for rotating machinery fault diagnosis is proposed in this paper. For the ability of evaluating the sensitivity of feature parameters, the maximum value of synthesis distance evaluation index is taken as the optimizing object function, and the optimal multiwavelets are searched from the library of CL3 adaptive multiwavelets by genetic algorithm. Then they are used for extracting features from vibration signals of rotor. To prove the effectiveness of the proposed method, K-nearest neighbor classifier is used for analyzing the features extracted by the proposed feature extraction method, the synthesis distance evaluation index feature extraction method and the principal component analysis feature extraction method from vibration signals of the experimental rotating machinery under normal, unbalance, misalignment and rotor-to-stator rub conditions,respectively. The results show that the method proposed in this paper can improve the sensitivity of feature parameters and obtain higher fault recognition rate.

关键词

旋转机械 / 特征提取 / 故障诊断 / CL3自适应多小波 / 综合距离评估指数

Key words

rotating machinery / feature extraction / fault diagnosis / CL3 adaptive multiwavelets / synthesis distance evaluation index

引用本文

导出引用
卢娜;肖志怀;张广涛;孙召辉. 基于自适应多小波与综合距离评估指数的旋转机械故障特征提取[J]. 振动与冲击, 2014, 33(12): 193-199
LU Na XIAO Zhi-huai ZHANG Guang-tao SUN Zhao-hui. Feature extraction based on adaptive multiwavelets and synthesis distance evaluation index for rotating machinery fault diagnosis [J]. Journal of Vibration and Shock, 2014, 33(12): 193-199

PDF(1498 KB)

Accesses

Citation

Detail

段落导航
相关文章

/