含随机参数空间柔性梁的动力学模型

靳红玲;陈建军;赵 宽;曹鸿钧

振动与冲击 ›› 2014, Vol. 33 ›› Issue (14) : 6-10.

PDF(1516 KB)
PDF(1516 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (14) : 6-10.
论文

含随机参数空间柔性梁的动力学模型

  • 靳红玲,陈建军,赵 宽,曹鸿钧

作者信息 +

Uncertainty dynamic modeling of spatial flexible beam with probabilistic parameters

  • JIN Hong-ling,CHEN Jian-jun,ZHAO Kuan,CAO Hong-jun
Author information +
文章历史 +

摘要

研究含随机参数空间柔性梁作大范围运动的动力响应问题。基于虚功原理建立随机参数空间柔性梁动力学模型,利用多项式混沌结合高效回归法将其转化为完全隐式纯微分方程,通过可变秩法获得响应函数展开多项式系数,进而获得柔性梁变形响应量数字特征。以物理、几何参数具有随机性自旋空间柔性梁为例,获得动力响应统计意义下的解,通过与Monte Carlo法结果比较,验证该方法的正确性及有效性。计算结果表明,利用随机参数的动力学模型能客观反映空间自旋柔性梁动力学行为;部分随机参数的分散性对柔性体动力响应影响不可忽视。

Abstract

The uncertainty dynamic response of a spatial flexible beam with large overall motion is investigated in this work. The stochastic differential equation of a three-dimensional beam with large overall motion is derived using the virtual work principle. The polynomial chaos method and a regression-based collocation method are applied to derive a set of completely implicit differential equations. The resulting system of deterministic equations is then solved using the variable rank method to obtain the numerical characteristics of the response. For illustration, the dynamic modeling of a spatial spinning beam with probabilistic geometric and physical parameters is considered. The accuracy and efficiency of the method are verified by comparing the results with those given by the Monte Carlo simulation method. The results indicate that probabilistic parameters affect the dynamic response of the flexible body. It is expected that dynamic modeling with probabilistic parameters can objectively reflect the actual dynamic behavior of elastic systems.

关键词

随机参数 / 空间柔性梁 / 耦合动力学 / 多项式混沌

Key words

probabilistic parameter / spatial flexible beam / coupling dynamics / polynomial chaos

引用本文

导出引用
靳红玲;陈建军;赵 宽;曹鸿钧. 含随机参数空间柔性梁的动力学模型[J]. 振动与冲击, 2014, 33(14): 6-10
JIN Hong-ling;CHEN Jian-jun;ZHAO Kuan;CAO Hong-jun. Uncertainty dynamic modeling of spatial flexible beam with probabilistic parameters[J]. Journal of Vibration and Shock, 2014, 33(14): 6-10

PDF(1516 KB)

Accesses

Citation

Detail

段落导航
相关文章

/