基于量子粒子群算法的结构模态参数识别

常 军;刘大山

振动与冲击 ›› 2014, Vol. 33 ›› Issue (14) : 72-76.

PDF(1373 KB)
PDF(1373 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (14) : 72-76.
论文

基于量子粒子群算法的结构模态参数识别

  • 常 军,刘大山
作者信息 +

Approach on structural modal parameter identification based on quantum-behaved particle swarm optimization

  • CHANG Jun,LIU Da-shan

Author information +
文章历史 +

摘要

以由结构输入输出数据计算所得实测频响函数与理论频响函数差值最小化为优化目标,通过对理论频响函数中所含结构模态参数搜索取值使目标函数最小,即将结构模态参数识别问题转化为优化问题。采用量子粒子群算法对此过程优化计算,获得结构模态参数。用数值模拟六层框架结构对该方法进行验证。结果表明,量子粒子群可有效识别结构模态参数。

Abstract

Quantum-behaved Particle Swarm Optimization, as a development of Particle Swarm Optimization, is an optimization algorithm based on Swarm Intelligence. Thank to its advantages of less parameter, simple programming, easy to convergence and fast convergence, Quantum-behaved Particle Swarm Optimization received much concern. The minimization of difference between theoretical and test value of frequency response function, the former is a formula including modal parameters, and the later is calculated based on the input and output data of structure, will be adopted as an objection function of optimization issue. The optimal objective value can be gained through searching reasonable modal parameters. Then, the issue of structural modal identification is converted to an optimization issue. During the optimization procedure, Quantum-behaved Particle Swarm Optimization is adopted and the modal parameters are identified. Finally, the modal parameter identification method based on Quantum-behaved Particle Swarm Optimization presented herein will be verified by a numerical simulation of six-story frame structure. The calculation results show that the method can effectively identify the structural modal parameters.

关键词

量子粒子群优化算法 / 粒子群优化算法 / 优化算法 / 频响函数 / 结构模态参数识别

Key words

quantum-behaved particle swarm optimization / particle swarm optimization / optimization algorithm / frequency response function / structural modal parameter identification

引用本文

导出引用
常 军;刘大山. 基于量子粒子群算法的结构模态参数识别 [J]. 振动与冲击, 2014, 33(14): 72-76
CHANG Jun;LIU Da-shan. Approach on structural modal parameter identification based on quantum-behaved particle swarm optimization[J]. Journal of Vibration and Shock, 2014, 33(14): 72-76

PDF(1373 KB)

652

Accesses

0

Citation

Detail

段落导航
相关文章

/